Despite advances in sequencing, the goal of obtaining a comprehensive view of genetic variation in populations is still far from reached. We sequenced 180 lines of A. thaliana from Sweden to obtain as complete a picture as possible of variation in a single region. Whereas simple polymorphisms in the unique portion of the genome are readily identified, other polymorphisms are not. The massive variation in genome size identified by flow cytometry seems largely to be due to 45S rDNA copy number variation, with lines from northern Sweden having particularly large numbers of copies. Strong selection is evident in the form of long-range linkage disequilibrium (LD), as well as in LD between nearby compensatory mutations. Many footprints of selective sweeps were found in lines from northern Sweden, and a massive global sweep was shown to have involved a 700-kb transposition.
Analogous to genetically distinct alleles, epialleles represent heritable states of different gene expression from sequence-identical genes. Alleles and epialleles both contribute to phenotypic heterogeneity. While alleles originate from mutation and recombination, the source of epialleles is less well understood. We analyze active and inactive epialleles that were found at a transgenic insert with a selectable marker gene in Arabidopsis. Both converse expression states are stably transmitted to progeny. The silent epiallele was previously shown to change its state upon loss-of-function of trans-acting regulators and drug treatments. We analyzed the composition of the epialleles, their chromatin features, their nuclear localization, transcripts, and homologous small RNA. After mutagenesis by T-DNA transformation of plants carrying the silent epiallele, we found new active alleles. These switches were associated with different, larger or smaller, and non-overlapping deletions or rearrangements in the 3′ regions of the epiallele. These cis-mutations caused different degrees of gene expression stability depending on the nature of the sequence alteration, the consequences for transcription and transcripts, and the resulting chromatin organization upstream. This illustrates a tight dependence of epigenetic regulation on local structures and indicates that sequence alterations can cause epigenetic changes at some distance in regions not directly affected by the mutation. Similar effects may also be involved in gene expression and chromatin changes in the vicinity of transposon insertions or excisions, recombination events, or DNA repair processes and could contribute to the origin of new epialleles.
The orchid family is the largest in the angiosperms, but little is known about the molecular basis of the significant variation they exhibit. We investigate here the transcriptomic divergence between two European terrestrial orchids, Dactylorhiza incarnata and Dactylorhiza fuchsii, and integrate these results in the context of their distinct ecologies that we also document. Clear signals of lineage‐specific adaptive evolution of protein‐coding sequences are identified, notably targeting elements of biotic defence, including both physical and chemical adaptations in the context of divergent pools of pathogens and herbivores. In turn, a substantial regulatory divergence between the two species appears linked to adaptation/acclimation to abiotic conditions. Several of the pathways affected by differential expression are also targeted by deviating post‐transcriptional regulation via sRNAs. Finally, D. incarnata appears to suffer from insufficient sRNA control over the activity of RNA‐dependent DNA polymerase, resulting in increased activity of class I transposable elements and, over time, in larger genome size than that of D. fuchsii. The extensive molecular divergence between the two species suggests significant genomic and transcriptomic shock in their hybrids and offers insights into the difficulty of coexistence at the homoploid level. Altogether, biological response to selection, accumulated during the history of these orchids, appears governed by their microenvironmental context, in which biotic and abiotic pressures act synergistically to shape transcriptome structure, expression and regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.