ObjectiveThe increasing prevalence of antibiotic-resistant bacterial infections led to identify alternative strategies for a novel therapeutic approach. In this study, we synthesized ten carvacrol codrugs – obtained linking the carvacrol hydroxyl group to the carboxyl moiety of sulphur-containing amino acids via an ester bond – to develop novel compounds with improved antimicrobial and antibiofilm activities and reduced toxicity respect to carvacrol alone.MethodAll carvacrol codrugs were screened against a representative panel of Gram positive (S. aureus and S. epidermidis), Gram negative (E. coli and P. aeruginosa) bacterial strains and C. albicans, using broth microdilution assays.FindingsResults showed that carvacrol codrug 4 possesses the most notable enhancement in the anti-bacterial activity displaying MIC and MBC values equal to 2.5 mg/mL for all bacterial strains, except for P. aeruginosa ATCC 9027 (MIC and MBC values equal to 5 mg/mL and 10 mg/mL, respectively). All carvacrol codrugs 1-10 revealed good antifungal activity against C. albicans ATCC 10231. The cytotoxicity assay showed that the novel carvacrol codrugs did not produce human blood hemolysis at their MIC values except for codrugs 8 and 9. In particular, deepened experiments performed on carvacrol codrug 4 showed an interesting antimicrobial effect on the mature biofilm produced by E. coli ATCC 8739, respect to the carvacrol alone. The antimicrobial effects of carvacrol codrug 4 were also analyzed by TEM evidencing morphological modifications in S. aureus, E. coli, and C. albicans.ConclusionThe current study presents an insight into the use of codrug strategy for developing carvacrol derivatives with antibacterial and antibiofilm potentials, and reduced cytotoxicity.
The (R)-α-lipoyl-glycyl-L-prolyl-L-glutamyl dimethyl ester codrug (LA-GPE, 1) was synthesized as a new multifunctional drug candidate with antioxidant and neuroprotective properties for the treatment of neurodegenerative diseases. Physicochemical properties, chemical and enzymatic stabilities were evaluated, along with the capacity of LA-GPE to penetrate the blood-brain barrier (BBB) according to an in vitro parallel artificial membrane permeability assay for the BBB. We also investigated the potential effectiveness of LA-GPE against the cytotoxicity induced by 6-hydroxydopamine (6-OHDA) and H2O2 on the human neuroblastoma cell line SH-SY5Y by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Our results show that codrug 1 is stable at both pH 1.3 and 7.4, exhibits good lipophilicity (log P=1.51) and a pH-dependent permeability profile. Furthermore, LA-GPE was demonstrated to be significantly neuroprotective and to act as an antioxidant against H2O2- and 6-OHDA-induced neurotoxicity in SH-SY5Y cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.