Summary Objective Patients with absence epilepsy sensitivity <10% of their absences. The clinical gold standard to assess absence epilepsy is a 24‐h electroencephalographic (EEG) recording, which is expensive, obtrusive, and time‐consuming to review. We aimed to (1) investigate the performance of an unobtrusive, two‐channel behind‐the‐ear EEG‐based wearable, the Sensor Dot (SD), to detect typical absences in adults and children; and (2) develop a sensitive patient‐specific absence seizure detection algorithm to reduce the review time of the recordings. Methods We recruited 12 patients (median age = 21 years, range = 8–50; seven female) who were admitted to the epilepsy monitoring units of University Hospitals Leuven for a 24‐h 25‐channel video‐EEG recording to assess their refractory typical absences. Four additional behind‐the‐ear electrodes were attached for concomitant recording with the SD. Typical absences were defined as 3‐Hz spike‐and‐wave discharges on EEG, lasting 3 s or longer. Seizures on SD were blindly annotated on the full recording and on the algorithm‐labeled file and consequently compared to 25‐channel EEG annotations. Patients or caregivers were asked to keep a seizure diary. Performance of the SD and seizure diary were measured using the F1 score. Results We concomitantly recorded 284 absences on video‐EEG and SD. Our absence detection algorithm had a sensitivity of .983 and false positives per hour rate of .9138. Blind reading of full SD data resulted in sensitivity of .81, precision of .89, and F1 score of .73, whereas review of the algorithm‐labeled files resulted in scores of .83, .89, and .87, respectively. Patient self‐reporting gave sensitivity of .08, precision of 1.00, and F1 score of .15. Significance Using the wearable SD, epileptologists were able to reliably detect typical absence seizures. Our automated absence detection algorithm reduced the review time of a 24‐h recording from 1‐2 h to around 5–10 min.
SUMMARYObjective: Determine the efficacy and side effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) to treat refractory neocortical epilepsy and study differences in effect between a figure-8 and round coil type. Methods: This single-center randomized sham-controlled crossover trial (NCT01745952 on ClinicalTrials.gov) included 11 patients with well-defined focal epilepsy. rTMS (0.5 Hz) was targeted to the focus during three treatment conditions consisting of 1,500 stimulations/day for 10 weekdays at 90% of resting motor threshold (rMT) followed by a 10-week observation period. Patients were randomized for the order in which the figure-8, round, and sham coil were used. Outcome assessors and patients were blinded to the type of coil used. The primary outcome measure was the percentage of seizure reduction after active rTMS treatment. Other outcome measures were responder rate, quality of life, and side effects. Results: There was no difference between a figure-8 and round coil. None of the patients achieved an overall 50% seizure reduction. One patient responded during 1 month after treatment with either active coil, followed by a significant increase in seizure frequency. Another patient had a fourfold increase in seizure frequency during rTMS treatment. Significance: This study provides evidence that rTMS is on average not effective for reducing seizure frequency. No difference in effectiveness between the different coil types was observed. It can, however, exacerbate seizures during treatment and lead to a rebound in seizure frequency after an initial reduction.
BackgroundPatients with recurrent glioblastoma (rGB) have a poor prognosis with a median overall survival (OS) of 30–39 weeks in prospective clinical trials. Intravenous administration of programmed cell death protein 1 and cytotoxic T-lymphocyte-associated antigen 4 inhibitors has low activity in patients with rGB. In this phase I clinical trial, intracerebral (IC) administration of ipilimumab (IPI) and nivolumab (NIVO) in combination with intravenous administration of NIVO was investigated.MethodsWithin 24 hours following the intravenous administration of a fixed dose (10 mg) of NIVO, patients underwent a maximal safe resection, followed by injection of IPI (10 mg; cohort-1), or IPI (5 mg) plus NIVO (10 mg; cohort-2) in the brain tissue lining the resection cavity. Intravenous administration of NIVO (10 mg) was repeated every 2 weeks (max. five administrations). Next generation sequencing and RNA gene expression profiling was performed on resected tumor tissue.ResultsTwenty-seven patients were enrolled (cohort-1: n=3; cohort-2: n=24). All patients underwent maximal safe resection and planned IC administrations and preoperative NIVO. Thirteen patients (cohort-1: n=3; cohort-2: n=10) received all five postoperative intravenous doses of NIVO. In cohort-2, 14 patients received a median of 3 (range 1–4) intravenous doses. Subacute postoperative neurological deterioration (n=2) was reversible on steroid treatment; no other central nervous system toxicity was observed. Immune-related adverse events were infrequent and mild. GB recurrence was diagnosed in 26 patients (median progression-free survival (PFS) is 11.7 weeks (range 2–152)); 21 patients have died due to progression. Median OS is 38 weeks (95% CI: 27 to 49) with a 6-month, 1-year, and 2-year OS-rate of, respectively, 74.1% (95% CI: 57 to 90), 40.7% (95% CI: 22 to 59), and 27% (95% CI: 9 to 44). OS compares favorable against a historical cohort (descriptive Log-Rank p>0.003). No significant difference was found with respect to PFS (descriptive Log-Rank test p>0.05). A higher tumor mRNA expression level of B7-H3 was associated with a significantly worse survival (multivariate Cox logistic regression, p>0.029).ConclusionIC administration of NIVO and IPI following maximal safe resection of rGB was feasible, safe, and associated with encouraging OS.Trial registrationNCT03233152.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.