Açaí (Euterpe oleracea) is a Brazilian typical fruit that is enveloped by natural fibers. This work investigated the effect of incorporating ground açaí fibers (in natura and chemically treated with NaOH and HCl) in 5–10 wt.% replacement of Portland cement on the rheology, hydration, and microstructure of pastes. Rotational rheometry, isothermal calorimetry, X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) were performed to evaluate the cement pastes, in addition to SEM-EDS, FTIR, zeta potential, and XRD for fiber characterization. The results showed that the chemical treatment reduced the cellulose and lignin contents in açaí fibers while increasing its surface roughness. The addition of 5% of either fiber slightly increased the yield stress and viscosity of paste, while 10% addition drastically increased these properties, reaching yield stress and viscosity values respectively 40 and 8 times higher than those of plain paste. The incorporation of 5% in natura fibers delayed the cement hydration by about 2.5 days while 10% in natura fibers delayed it by over 160 h. The chemical treatment significantly reduced this retarding effect, leading to a 3 h delay when 5% treated fibers were incorporated. Overall, the combined NaOH/HCl treatment was effective for açaí fibers functionalization and these fibers can be used in cementitious composites.
The functionalization process usually increases the localized defects of carbon nanotubes (CNT). Thus, the ultrasonication parameters used for dispersing non-functionalized CNT should be carefully evaluated to verify if they are adequate in dispersing functionalized CNT. Although ultrasonication is widely used for non-functionalized CNT, the effect of this dispersing process of functionalized CNT has not been thoroughly investigated. Thus, this work investigated the effect of ultrasonication on functionalized CNT + superplasticizer (SP) aqueous dispersions by ultraviolet-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR). Furthermore, Portland cement pastes with additions of 0.05% and 0.1% CNT by cement weight and ultrasonication amplitudes of 0%, 50% and 80% were evaluated through rheometry, isothermal calorimetry, compressive strength at 1, 7 and 28 days, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). FTIR results from CNT + SP dispersions indicated that ultrasonication may negatively affect SP molecules and CNT graphene structure. The increase in CNT content and amplitude of ultrasonication gradually increased the static and dynamic yield stress of paste but did not significantly affect its hydration kinetics. Compressive strength results indicated that the optimum CNT content was 0.05% by cement weight, which increased the strength of composite by up to 15.8% compared with the plain paste. CNT ultrasonication neither increases the degree of hydration of cement nor the mechanical performance of composite when compared with mixes containing unsonicated CNT. Overall, ultrasonication of functionalized CNT is not efficient in improving the fresh and hardened performance of cementitious composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.