Oral cancer is a multifactorial pathology and is characterized by the lack of efficient treatment and accurate diagnostic tools. This is mainly due the late diagnosis; therefore, reliable biomarkers for the timely detection of the disease and patient stratification are required. Non-coding RNAs (ncRNAs) are key elements in the physiological and pathological processes of various cancers, which is also reflected in oral cancer development and progression. A better understanding of their role could give a more thorough perspective on the future treatment options for this cancer type. This review offers a glimpse into the ncRNA involvement in oral cancer, which can help the medical community tap into the world of ncRNAs and lay the ground for more powerful diagnostic, prognostic and treatment tools for oral cancer that will ultimately help build a brighter future for these patients.
Oral cancer is a prevalent cancer type on a global scale, whose traditional treatment strategies have several drawbacks that could in the near future be overcome through the development of novel therapeutic and prognostic strategies. Nanotechnology provides an alternative to traditional therapy that leads to enhanced efficiency and less toxicity. Various nanosystems have been developed for the treatment of oral cancer, including polymeric, metallic, and lipid-based formulations that incorporate chemotherapeutics, natural compounds, siRNA, or other molecules. This review summarizes the main benefits of using these nanosystems, in parallel with a particular focus on the issues encountered in medical practice. These novel strategies have provided encouraging results in both in vitro and in vivo studies, but few have entered clinical trials. The use of nanosystems in oral cancer has the potential of becoming a valid therapeutic option for patients suffering from this malignancy, considering that clinical trials have already been completed and others are currently being developed.
Lung cancer continues to be the leading topic concerning global mortality rate caused by can-cer; it needs to be further investigated to reduce these dramatic unfavorable statistic data. Non-coding RNAs (ncRNAs) have been shown to be important cellular regulatory factors and the alteration of their expression levels has become correlated to extensive number of pathologies. Specifically, their expres-sion profiles are correlated with development and progression of lung cancer, generating great interest for further investigation. This review focuses on the complex role of non-coding RNAs, namely miR-NAs, piwi-interacting RNAs, small nucleolar RNAs, long non-coding RNAs and circular RNAs in the process of developing novel biomarkers for diagnostic and prognostic factors that can then be utilized for personalized therapies toward this devastating disease. To support the concept of personalized medi-cine, we will focus on the roles of miRNAs in lung cancer tumorigenesis, their use as diagnostic and prognostic biomarkers and their application for patient therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.