Background: Multielectrodes are implanted in central and peripheral nervous systems for rehabilitation and diagnostic purposes. The physical resistance of intracranial devices to mechanical stress is critical and fractures or electrode displacement may occur. We describe here a new recording device with stretchable properties based on Supersonic Cluster Beam Implantation (SCBI) technology with high mechanical adaptability to displacement and movement. Results: The capability of SCBI-based multichannel electrodes to record brain electrical activity was compared to glass/silicon microelectrodes in acute in vitro experiments on the isolated guinea pig brain preparation. Field potentials and power frequency analysis demonstrated equal recording features for SCBI and standard electrodes. Chronic in vivo epidural implantation of the SCBI electrodes confirmed excellent long-term recording properties in comparison to standard EEG metal electrodes. Tissue biocompatibility was demonstrated by neuropathological evaluation of the brain tissue 2 months after the implantation of the devices in the subarachnoid space. Conclusion: We confirm the biocompatibility of novel SCBI-based stretchable electrode devices and demonstrate their suitability for recording electrical brain activity in pre-clinical settings.
Prosthetic valve thrombosis (PVT) is a serious complication affecting prosthetic heart valves. The transvalvular mean pressure gradient (MPG) derived by Doppler echocardiography is a crucial index to diagnose PVT but may result in false negatives mainly in case of bileaflet mechanical valves (BMVs) in mitral position. This may happen because MPG estimation relies on simplifying assumptions on the transvalvular fluid dynamics or because Doppler examination is manual and operator dependent. A deeper understanding of these issues may allow for improving PVT diagnosis and management. To this aim, we used in vitro and fluid–structure interaction (FSI) modeling to simulate the function of a real mitral BMV in different configurations: normally functioning and stenotic with symmetric and completely asymmetric leaflet opening, respectively. In each condition, the MPG was measured in vitro, computed directly from FSI simulations and derived from the corresponding velocity field through a Doppler-like postprocessing approach. Following verification versus in vitro data, MPG computational data were analyzed to test their dependency on the severity of fluid-dynamic derangements and on the measurement site. Computed MPG clearly discriminated between normally functioning and stenotic configurations. They did not depend markedly on the site of measurement, yet differences below 3 mmHg were found between MPG values at the central and lateral orifices of the BMV. This evidence suggests a mild uncertainty of the Doppler-based evaluation of the MPG due to probe positioning, which yet may lead to false negatives when analyzing subjects with almost normal MPG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.