The place of pemphigus vulgaris (PV) among autoimmune bullous dermatoses is well known. In pemphigus, IgG autoantibodies are directed against desmogleins 1 and 3, which are part of the cadherin family of cell-cell adhesion molecules. These structures are responsible for maintaining the intercellular adherence in stratified squamous epithelia, such as the skin and oral mucosa. The incidence of autoimmune bullous dermatoses is steadily increasing, being associated with a high degree of morbidity. The pathophysiology of these dermatoses is very well understood, complemented by recent genetic studies. The gold standard for the diagnosis of pemphigus vulgaris is the detection of autoantibodies or complement component 3 by direct immunofluorescence microscopy of a perilesional biopsy. Early diagnosis and initiation of treatment are necessary in order to achieve a favorable prognosis. Although the first line of treatment is corticotherapy, there are no clear guidelines on dosing regimens, and long-term adverse effects are important. Corticosteroid-sparing adjuvant therapies have been employed in the treatment of PV, aiming to reduce the necessary cumulative dose of corticosteroids. In addition, therapies with anti-CD20 antibodies are used, but antigen-specific immune suppression-based treatments represent the future.
Plaque psoriasis is a chronic, immune-mediated disease, which has a multifactorial etiopathogenesis. Practical non-invasive techniques to monitor plaque psoriasis progression and treatment are necessary. Imaging techniques available for psoriasis assessment may vary in terms of resolution, depth of penetration and visual representation. This review summarizes the current developments in the field of psoriasis non-invasive imaging techniques, such as dermoscopy, conventional ultrasound and high frequency ultrasonography (HFUS), videocapillaroscopy (VC), reflectance confocal microscopy (RCM), optical microangiography (OMAG), laser Doppler imaging (LDI), multiphoton tomography (MPT) and optical coherence tomography (OCT). The aim was to collect and analyze data concerning types, indications, advantages and disadvantages of modern imaging techniques for in vivo psoriasis assessment. We focused on two main methods, videodermoscopy and HFUS, which can be included in daily dermatologists' practice and which may assist in establishing diagnosis, as well as monitoring response to topical and/or systemic therapy of psoriasis. Dermoscopy may be useful for a first evaluation and may offer an understanding of the type and distribution of blood vessels, as well as the color of the scale and the background of the lesion. Videodermoscopy allows magnification and offers a detailed evaluation of the vessel type. The utility of HFUS consists mainly in monitoring therapy response. These methods may be comparable with virtual histopathology. Contents 1. Introduction 2. Dermoscopy and videodermoscopy as non-invasive techniques in the diagnosis of psoriasis vulgaris 3. High frequency ultrasonography in monitoring therapeutic response in plaques psoriasis 4. Other imaging techniques 5. Conclusions
Basal cell carcinoma (BCC) is the most common form of cutaneous neoplasia in humans, and dermoscopy may provide valuable information for histopathological classification of BCC, which allows for the choice of non-invasive topical or surgical therapy. Similarly, dermoscopy may allow for the identification of incipient forms of BCC that cannot be detected in clinical examination. The importance of early diagnosis using the dermoscopy of superficial BCC forms is proven by the fact that despite their indolent clinical appearance, they can be included in high-risk BCC forms due to the rate of postoperative recurrence. Nodular pigmentary forms of BCCs present ovoid gray-blue nests or multiple gray-blue dots/globules associated with arborized vessels, sometimes undetectable on clinical examination. The management of BCC depends on this, as pigmentary forms have been shown to have a poor response to photodynamic therapy. High frequency ultrasound examination (HFUS) aids in the diagnosis of BCC with hypoechoic tumour masses, as well as in estimating tumour size (thickness and diameter), presurgical margin delineation, and surgical planning. The examination is also useful for determining the invasion of adjacent structures and for studying local recurrences. The use of dermoscopy in combination with HFUS allows for optimisation of the management of the oncological patient.
Human body is a complex of organic substances (proteins, lipids, carbohydrates), which undergo chemical decomposition processes soon after death. The compounds released during decomposition characterize the development of different stages of this process: e.g. biogenic amines resulted from the proteins decomposition will confer the particular smell of a cadaver, gases resulted from carbohydrates fermentation will give the bloating aspect of the cadaver. The study of cadaver decomposition and the products resulted from this process is the subject of human taphonomy and is realized nowadays in special facilities in USA and Australia. Identification and analysis of the chemical compounds emerged after human decomposition (gases, liquids, salts) give valuable information to forensic pathologists for estimating the postmortem interval (PMI). More, volatile compounds � which give the odor signature�specific to human remains � may be utilized in identifying clandestine burials, human remains or victims entrapped under ruins in cases of natural disasters. In this paper the authors describe the chemical decomposition stages of human cadavers, the factors influencing these processes and utility for the forensic activity of the results of human taphonomic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.