The emerging field of biomimicry and learning to design with and for nature has expanded in recent years through a diversity of educational programs. Inspiration following natural forms may give the appearance of being sustainable, but the question remains, how sustainable is it? Misunderstanding the function of these forms may leave designers with products not as sustainable as desired. Biomimicry education addresses these issues by integrating three essential elements into their design thinking phases and by using analogical transfer while doing so. This field learns from nature as model, nature as measure, and nature as mentor, throughout the design process. Through examination, analyses and verification of students designs and reflective processes at The Hague University of Applied Sciences, this research considers natures analogies in educational factors, determining which elements are influential when incorporating biomimicry into design education.
Biomimicry education is grounded in a set of natural design principles common to every known lifeform on Earth. These Life’s Principles (LPs) (cc Biomimicry 3.8), provide guidelines for emulating sustainable strategies that are field-tested over nearly four billion years of evolution. This study evaluates an exercise for teaching LPs to interdisciplinary students at three universities, Arizona State University (ASU) in Phoenix, Arizona (USA), College of Charleston (CofC) in Charleston, South Carolina (USA) and The Hague University of Applied Sciences (THUAS) in The Hague (The Netherlands) during the spring 2021 semester. Students researched examples of both biological organisms and human designs exhibiting the LPs. We gauged the effectiveness of the exercise through a common rubric and a survey to discover ways to improve instruction and student understanding. Increased student success was found to be directly linked to introducing the LPs with illustrative examples, assigning an active search for examples as part of the exercise, and utilizing direct assessment feedback loops. Requiring students to highlight the specific terms of the LP sub-principles in each example is a suggested improvement to the instructions and rubric. An iterative, face-to-face, discussion-based teaching and learning approach helps overcome minor misunderstandings. Reiterating the LPs throughout the semester with opportunities for application will highlight the potential for incorporating LPs into students’ future sustainable design process.
Preliminary empirical research conducted by the leading author has shown that design students using biological analogies, or models across different contexts, often misinterpreted these, intentionally or unintentionally, during design. By copying shape or form without integrating the main function of the mimicked biological model, students failed to consider the process or system directing that function when attempting to solve the design need. This article considers the first step in the development of an applicable educational model using distant analogies from nature, by means of biomimicry thinking methodology. The analysis examines results from a base-line exercise taken by students in the Minor Design with Nature during the Spring semester of Industrial Design Engineering at The Hague University of Applied Sciences in 2019, verifying that students without biomimicry training use this hollow approach automatically. This research confirms the gap between where students are at the beginning of the semester and where they need to be as expert sustainable designers when they graduate. These findings provide a starting point for future interventions in biomimicry workshops to improve systematic design thinking through structural and scientifically based iterations of analogical reasoning.
Rate of change concepts from calculus are presented and applied rather differently in college mathematics, physics, biology, and chemistry classes. This is not simply a matter of pedagogical style but reflects real cultural differences between these disciplines. We describe the efforts of our interdisciplinary collaboration to understand and reconcile these differences as we designed and discussed instructional videos for students. We summarize our conversations about terminology, notation, functions, rates, units, and sign conventions across the disciplines. We present some strategies that enabled us to communicate effectively, resolve confusions, and reach shared understandings. Our work has implications for others involved in collaborative interdisciplinary projects and for STEM educators.In theory, there’s no difference between theory and practice. But in practice, there is.– Benjamin Brewster. Also attributed to Yogi Berra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.