Predisaster damage predictions and postdisaster damage assessments often inadequately capture the intensity and spatialtemporal complexity of natural hazard-caused damage. Accurate identification of areas with the greatest need in the wake of a disaster requires assessment of both the hazards and community vulnerabilities. This study evaluated the contribution of eight hazard and vulnerability drivers of structural damage due to Hurricane María in Puerto Rico, including wind, flood, landslide, and vulnerability measures via ensemble decision tree algorithms. Results from the algorithms indicate that vulnerability measures, including a structural vulnerability index and a social vulnerability index, were the leading predictors of damage, followed by wind, flood, and landslide measures. Therefore, it is critical to consider community vulnerabilities in damage pattern analyses and targeted, predisaster mitigation efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.