A Proteomic Analysis of Differentiation in the Mammary EpitheliumLaura Therese Strand While a great deal is known about the changing hormonal environment and the structural development of the mammary gland from pregnancy to lactation, very little is known about the molecular mechanisms governing differentiation of the mammary epithelium into a milk-secreting phenotype. It is important to acknowledge the diversity among the mammary glands of different species in order to better understand applications in human health and the dairy industry. In this study, we examined global protein expression during two states of differentiation in mammary epithelial cells from two species: in vitro proliferating and differentiated MAC-T cells (a bovine immortal cell-line), and primary mammary epithelial cells isolated from pregnant and lactating mice. When comparing the lists of proteins that differed in abundance in the two experiments, we observed many similarities in proteins related to structural dynamics and mRNA processing within these two mammary epithelial cell types. Intriguingly, we observed several differences in the regulation of metabolic proteins, highlighting the distinct pathways by which different species probably metabolize energy and synthesize milk components.v ACKNOWLEDGEMENTS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.