All lit up: The title compound operates as a fluorescent light‐up probe that enables the detection of different biologically relevant hosts at different fluorescence maxima. It is demonstrated that this chemosensor also allows the fluorimetric multicolor analysis of different components in living cells (see figure).
Oligonucleotide conjugates of tris(2-aminobenzimidazole) have been reported previously to cleave complementary RNA strands with high levels of sequence and site specificity. The RNA substrates used in these studies were oligonucleotides not longer than 29-mers. Here we show that ~150–400-mer model transcripts derived from the 3′-untranslated region of the PIM1 mRNA reacted with rates and specificities comparable to those of short oligonucleotide substrates. The replacement of DNA by DNA/LNA mixmers further increased the cleavage rate. Tris(2-aminobenzimidazoles) were designed to interact with phosphates and phosphate esters. A cell, however, contains large amounts of phosphorylated species that may cause competitive inhibition of RNA cleavage. It is thus important to note that no loss in reaction rates was observed in phosphate buffer. This opens the way to in-cell applications for this type of artificial nuclease. Furthermore, we disclose a new synthetic method giving access to tris(2-aminobenzimidazoles) in multigram amounts.
The interactions of a triangle-shaped [2.2.2]heptamethinecyanine dye 1, namely 1,5,7-tris-[3-methylbenzothiazol-2-yl]-[2.2.2]heptamethindiium, with quadruplex DNA were studied with photometric and fluorimetric titrations, thermal DNA denaturation, CD and (1)H-NMR spectroscopy. The ligand binds to the quadruplex DNA with moderate affinity (K = 8 × 10(5) M(-1)), mainly by terminal π stacking. Remarkably, the ligand 1 exhibits a selectivity for quadruplex DNA relative to duplex DNA. Whereas the cyanine dye is very weakly fluorescent in aqueous solution, the emission intensity increases by a factor of >100 upon association with quadruplex DNA. Thus, it is shown that trinuclear cyanine derivatives may be employed as selective probes for the fluorimetric detection of quadruplex DNA.
A comparative study of the ability of amino-substituted benzo[b]quinolizinium derivatives to act as DNA- or protein-sensitive fluorescent probes is presented. Spectrophotometric titrations, DNA denaturation studies and viscometric titrations showed that all tested aminobenzo[b]quinolizinium derivatives intercalate into DNA with binding constants K(b) = 10(4)-10(5) M(-1). The intense fluorescence of the 9-aminobenzo[b]quinolizinium (Φ(fl) = 0.41) as well as the intrinsically very weak emission of the 7-aminobenzo[b]quinolizinium (Φ(fl) < 0.005) are quenched by the addition of DNA, most likely caused by a photoinduced electron transfer (PET) between the excited intercalated ligand and the DNA bases. The 6-aminobenzo[b]quinolizinium (1b) and the 6-amino-9-bromobenzo[b]quinolizinium (1c) exhibit very low fluorescence intensity in water (Φ(fl) < 0.005). However, in water-glycerol mixtures the emission intensity increases by factors of 56 (1b) and 27 (1c) with increasing glycerol content of the solution (0-100 wt%), which indicates the radiationless deactivation of the excited state of 1b and 1c due to a torsional relaxation, i.e. rotation about the exocyclic C(ar)-NH(2) bond. In the case of the bromo-substituted derivative 1c, a viscosity-independent heavy-atom-effect of the bromo substituent leads to additional quenching. The association of 1b and 1c with ds DNA leads to a restricted conformational flexibility of the intercalated ligand and results in an increase of fluorescence intensity. This effect is particularly strong in the presence of poly[dA-dT]-poly[dA-dT]. Upon association with ct DNA or poly[dG-dC]-poly[dG-dC] only very small enhancement of emission intensity (1b) or even a slight quenching (1c) of the fluorescence was observed because of the interfering PET reaction with the guanine residues. Preliminary experiments reveal that the 6-aminobenzo[b]quinolizinium derivatives 1b and 1c may also be employed as protein-sensitive probes, because their emission intensity increases upon association with selected albumins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.