The activation of the Janus-activated kinase 2 (Jak2) tyrosine kinase following ligand binding has remained incompletely characterized at the mechanistic level. We report that the peptidyl-prolyl isomerase (PPI) cyclophilin A (CypA), which is implicated in the regulation of protein conformation, is necessary for the prolactin (PRL)-induced activation of Jak2 and the progression of human breast cancer. A direct correlation was observed between the levels or activity of CypA and the extent of PRL-induced signaling and gene expression. Loss of PRLr-CypA binding, following treatment with the PPI inhibitor cyclosporine A (CsA), or overexpression of a dominant-negative PRLr mutant (P334A) resulted in a loss of PRLr/Jak2-mediated signaling. In vitro, CsA treatment of breast cancer cells inhibited their growth, motility, invasion, and soft agar colony formation. In vivo, CsA treatment of nude mice xenografted with breast cancer cells induced tumor necrosis and completely inhibited metastasis. These studies reveal that a CypA-mediated conformational change within the PRLr/Jak2 complex is required for PRLinduced transduction and function and indicate that the inhibition of prolyl isomerases may be a novel therapeutic strategy in the treatment of human breast cancer. [Cancer Res 2008;68(19):7769-78]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.