Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4). Overexpression of human Myc-tagged SMPD4 showed localization both to the outer nuclear envelope and the ER and additionally revealed interactions with several nuclear pore complex proteins by proteomics analysis. Fibroblasts from affected individuals showed ER cisternae abnormalities, suspected for increased autophagy, and were more susceptible to apoptosis under stress conditions, while treatment with siSMPD4 caused delayed cell cycle progression. Our data show that SMPD4 links homeostasis of membrane sphingolipids to cell fate by regulating the cross-talk between the ER and the outer nuclear envelope, while its loss reveals a pathogenic mechanism in microcephaly.
To date, mutations in 15 actin-or microtubule-associated genes have been associated with the cortical malformation lissencephaly and variable brainstem hypoplasia. During a multicenter review, we recognized a rare lissencephaly variant with a complex brainstem malformation in three unrelated children. We searched our large brain-malformation databases and found another five children with this malformation (as well as one with a less severe variant), analyzed available whole-exome or -genome sequencing data, and tested ciliogenesis in two affected individuals. The brain malformation comprised posterior predominant lissencephaly and midline crossing defects consisting of absent anterior commissure and a striking W-shaped brainstem malformation caused by small or absent pontine crossing fibers. We discovered heterozygous de novo missense variants or an in-frame deletion involving highly conserved zinc-binding residues within the GAR domain of MACF1 in the first eight subjects. We studied cilium formation and found a higher proportion of mutant cells with short cilia than of control cells with short cilia. A ninth child had similar lissencephaly but only subtle brainstem dysplasia associated with a heterozygous de novo missense variant in the spectrin repeat domain of MACF1. Thus, we report variants of the microtubule-binding GAR domain of MACF1 as the cause of a distinctive and most likely pathognomonic brain malformation. A gain-of-function or dominant-negative mechanism appears likely given that many heterozygous mutations leading to protein truncation are included in the ExAC Browser. However, three de novo variants in MACF1 have been observed in large schizophrenia cohorts.Microtubules (MTs) and filamentous actin form key structural components of the cytoskeleton, a dynamic intracellular structure that is essential for several basic cell functions, including migration, the formation of cellular processes (including axons and dendrites), axonal guidance, and vesicular trafficking. Mammalian genomes contain two spectraplakins-MACF1 (also known as ACF7) and DST (also known as BPAG1)-that function as actin-MT cross-linkers and essential integrators and modulators of cytoskeletal processes. [1][2][3] MACF1 is a large gene that expresses many isoforms, several of which are brain specific, through alternative splicing. The N terminus of the major isoforms contains two calponin-homology (CH) domains that bind actin, a plakin domain, and a long spectrin-repeat rod domain that confers flexibility. The C terminus of all isoforms functions as a MT binding domain and contains two calcium-binding EF-hand domains, a zinc-binding GAR (growth-arrest specific 2 or Gas2-related) domain, a positively charged Gly-Ser-Arg (GSR) region, and an EB1-binding SxIP domain. 1-3
See Uzquiano and Francis (doi: ) for a scientific commentary on this article. Mutations in RTTN , which encodes Rotatin, give rise to various brain malformations. Vandervore et al. reveal mitotic failure, aneuploidy, apoptosis and defective ciliogenesis in patient cells. Rotatin binds to myosin subunits in the leading edge of human neurons, which may explain the proliferation and migration defects observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.