The termination of GABA synaptic action by high-affinity, Na(+)-dependent, neuronal, and glial plasma membrane transporters plays an important role in regulating neuronal activity in physiological and pathological conditions. We have investigated the cellular localization and distribution in the cerebral cortex of adult rats of one GABA transporter (GAT), GAT-3, by immunocytochemistry with affinity-purified polyclonal antibodies directed to its predicted C terminus that react monospecifically with a protein of approximately 70 kDa. Light microscopic studies revealed specific GAT-3 immunoreactivity (ir) in small punctate structures, and it was never observed in fibers or cell bodies. No changes in immunostaining were observed in sections incubated with GAT-3 antibodies preadsorbed with the related rat GAT-1 or mouse GAT-2/ BGT-1 C-terminal peptides, whereas in sections incubated with GAT-3 antibodies preadsorbed with rat GAT-3 C-terminal peptide, ir was not present. The highest number of GAT-3-positive puncta was in layer IV and in a narrow band corresponding to layer Vb, followed by layers II and III. Many GAT-3-positive puncta were in close association with pyramidal and nonpyramidal neuron cell bodies. Ultrastructural studies showed that GAT-3 ir was localized exclusively to astrocytic processes, which were found in the neuropil and adjacent to axon terminals having either symmetric or asymmetric specializations. In sections processed by both preembedding labeling for GAT-3 and postembedding immunogold labeling for GABA, only some of the GAT-3-positive astrocytic processes were found close to GABAergic profiles. These findings on the localization of GAT-3 in the cerebral cortex indicate that this transporter mediates GABA uptake into glial cells, and suggest that glial GABA uptake may function to limit the spread of GABA from the synapse, as well as to regulate overall GABA levels in the neuropil.
The properties of type I collagen CNBr peptides in solution were studied to investigate the molecular species formed, their conformation, and factors influencing equilibria between peptide species. Peptides formed homologous trimers, even though the native parent protein is heterotrimeric, [alpha 1(I)]2 alpha 2-(I). Their triple-helical content was found to be high (> 75% for most peptides). Full helical content was not reached mainly because of the presence of monomer species; chain misalignment, if present, and trimer unraveling at terminal ends appeared to play a minor role in reducing helicity. Circular dichroism spectra and resistance to trypsin digestion at 4 and 20 degrees C demonstrated that the conformation of trimers was very similar to the collagen triple-helical conformation. Rotary shadowing of peptide alpha 1(I) CB7 supported this finding. Analytical gel filtration in nondenaturing conditions showed that the trimers of some peptides have the ability to autoaggregate. In the case of peptides alpha 1(I) CB8 and alpha 2(I) CB4, most of the intermolecular interactions between trimeric molecules were disrupted by 0.5 M NaCl, demonstrating that their ionic character is important. Changes in ionic strength also altered the hydrodynamic size of single- and triple-stranded molecules. The different molecular species are in equilibrium. The kinetics of the conversion of trimer to monomer species was determined in a time course experiment using trypsin digestion and found to be a relatively slow process (trimer half-life is a few days at 4 degrees C, about one order of magnitude lower at 20 degrees C) with an activation energy of roughly 4-9 kcal/mol. The circular dichroism profile at increasing temperatures showed that the melting temperature for triple-helical peptides is about 6-10 degrees C lower than that of the parent native type I collagen. The folding of peptides is a spontaneous process (exothermic but with unfavourable entropy change), and the triple-helical conformation originates solely as the result of the collagen sequence because it forms from heat-denatured samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.