We consider the bi-Laplacian eigenvalue problem for the modes of vibration of a thin elastic plate with a discrete set of clamped points. A high-order boundary integral equation method is developed for efficient numerical determination of these modes in the presence of multiple localized defects for a wide range of two-dimensional geometries. The defects result in eigenfunctions with a weak singularity that is resolved by decomposing the solution as a superposition of Green's functions plus a smooth regular part. This method is applied to a variety of regular and irregular domains and two key phenomena are observed. First, careful placement of clamping points can entirely eliminate particular eigenvalues and suggests a strategy for manipulating the vibrational characteristics of rigid bodies so that undesirable frequencies are removed. Second, clamping of the plate can result in partitioning of the domain so that vibrational modes are largely confined to certain spatial regions. This numerical method gives a precision tool for tuning the vibrational characteristics of thin elastic plates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.