Climate change and urbanization have resulted in several societal challenges for urban areas. Nature-based solutions (NBS) have been positioned as solutions for enhancing urban resilience in the face of these challenges. However, the body of conceptual and practical knowledge regarding NBS remains fragmented. This study addresses this gap by means of a systematic review of the literature, to define NBS as a theoretical concept; its broader significance with respect to societal challenges; the key stakeholders in NBS planning, implementation and management; and major barriers to and enablers of NBS uptake. The results of this review reveal that, despite a lack of consensus about the definition of NBS, there is a shared understanding that the NBS concept encompasses human and ecological benefits beyond the core objective of ecosystem conservation, restoration or enhancement. Significant barriers to and enablers of NBS are discussed, along with a proposed strategic planning framework for successful uptake of NBS.
Winter wheat-summer fallow is the conventional cropping system employed on > > > > >1·5 million ha within the Columbia Plateau of eastern Washington and northern Oregon. Wind erosion contributes to poor air quality in the region, yet little is known concerning the magnitude of soil and PM10 (particulate matter of ≤ ≤ ≤ ≤ ≤10 µ µ µ µ µm in aerodynamic diameter) loss from agricultural lands. Therefore, loss of soil and PM10 was assessed from a silt loam in eastern Washington during 2003 and 2004. Field sites were maintained in fallow using conventional tillage practices in 2003 (9 ha field) and 2004 (16 ha field) and instrumented to assess horizontal soil flux and PM10 concentrations at the windward and leeward positions in the field during high-wind events. Soil flux was measured using creep and airborne sediment collectors while PM10 concentrations were measured using high-volume PM10 samplers. Aggregate size distribution of parent soil and eroded sediment was characterized by rotary and sonic sieving. Six high-wind events occurred over the two year period, with soil loss ranging from 43 kg ha − − − − −1 for the 12-22 September 2003 event to 2320 kg ha − − − − −1 for the 27-29 October 2003 event. Suspension-sized particulates (< < < < < 100 µ µ µ µ µm in diameter) comprised ≥ ≥ ≥ ≥ ≥ 90 per cent of the eroded sediment, indicating that direct suspension may be an important process by which the silt loam eroded. The corresponding loss of PM10 for these two events ranged from 5 to 210 kg ha − − − − −1 . Loss of PM10 comprised 9-12 per cent of the total soil loss for the six events. This study suggests that the relatively small loss of PM10 from eroding agricultural fields maintained in summer fallow can affect air quality in the Columbia Plateau. Therefore, alternative tillage practices or cropping systems are needed for minimizing PM10 emissions and improving air quality in the region.Figure 2. Instrumentation at the field site with symbols representing placement of PM10 samplers, BSNE and creep collectors, and meteorological (met) station. 624 B. Sharratt et al.
Increasing global urbanization yields substantial potential for enhanced sustainability through careful management of urban development and optimized resource use efficiency. Nature-based solutions (NBS) can provide a means for cities to successfully navigate the water-energy-climate relationship, thus enhancing urban resilience. Implementation of NBS can improve local or regional economic resilience underpinned by the sustainable use of natural resources. The innovative governance, institutional, business, and finance models and frameworks inherent to NBS implementation also provide a wealth of opportunity for social transformation and increased social inclusiveness in cities. The ultimate benefit of NBS implementation in cities is increased livability, which is typically measured as a function of multiple social, economic and environmental variables. Given the range of different interventions classified as NBS and the cross-sectoral character of their co-benefits, different assessment schemes can be used to evaluate NBS performance and impact. Herein, performance and impact indicators within three robust NBS-and Smart City-related assessment schemes-Mapping and Assessment of Ecosystems and their Services (MAES), Knowledge and Learning Mechanism on Biodiversity and Ecosystem Services (EKLIPSE), and Smart City Performance Measurement Framework (CITYkeys)-were critically analyzed with respect to Sustainable Development Goal (SDG) 11, "Make cities and human settlements inclusive, safe, resilient and sustainable." Each selected assessment scheme was benchmarked with respect to the Inter-Agency Expert Group on SDG Indicators' global indicator framework for the sub-objectives of SDG 11. The alignment between each of the selected NBS assessment schemes and the SDG indicator framework was mapped with particular emphasis on consistency with city-level framework indicators for each SDG 11 sub-objective. The results were illustrated as composite scores describing the alignment of the analyzed NBS and Smart city assessment schemes with the SDG 11 sub-objectives. These results facilitate NBS assessment scheme selection based on alignment between each analyzed assessment scheme and specific SDG 11 sub-objectives. Cities face multiple challenges amidst a complex hierarchy of legislative, Wendling et al.Benchmarking NBS Assessment Against SDG11+ regulatory and other stakeholder obligations. The present study showed that strategic selection of an NBS assessment scheme which closely aligns with one or more sub-objectives within SDG 11 can maximize operational efficiency by exploiting synergies between evaluation schemes.
The applicability of steam activated pine and spruce bark biochar for storm water and wastewater purification has been investigated. Biochar samples produced from the bark of scots pine (Pinus sylvestrus) and spruce (Picea spp.) by conventional slow pyrolysis at 475 °C were steam activated at 800 °C. Steam activation was selected as a relatively inexpensive method for creating porous biochar adsorbents from the bark-containing sidestreams of the wood refining industry. A suite of standard analytical procedures were carried out to quantify the performance of the activated biochar in removing both cations and residual organics from aqueous media. Phenol and microplastics retention and cation exchange capacity were employed as key test parameters. Despite relatively low surface areas (200–600 m2/g), the steam-activated biochars were highly suitable adsorbents for the chemical species tested as well as for microplastics removal. The results indicate that ultra-high porosities are not necessary for satisfactory water purification, supporting the economic feasibility of bio-based adsorbent production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.