Maintenance of the stem cell population in the C. elegans germline requires GLP-1/Notch signaling. We show that this signaling inhibits the accumulation of the RNA binding protein GLD-1. In a genetic screen to identify other genes involved in regulating GLD-1 activity, we identified mutations in the nos-3 gene, the protein product of which is similar to the Drosophila translational regulator Nanos. Our data demonstrate that nos-3 promotes GLD-1 accumulation redundantly with gld-2,and that nos-3 functions genetically downstream or parallel to fbf, an inhibitor of GLD-1 translation. We show that the GLD-1 accumulation pattern is important in controlling the proliferation versus meiotic development decision, with low GLD-1 levels allowing proliferation and increased levels promoting meiotic entry.
Background
For a stem cell population to exist over an extended period, a balance must be maintained between self-renewing (proliferating) and differentiating daughter cells. Within the Caenorhabditis elegans germ line, this balance is controlled by a genetic regulatory pathway, which includes the canonical Notch signaling pathway.
Results
Genetic screens identified the gene teg-1 as being involved in regulating the proliferation vs. differentiation decision in the C. elegans germ line. Cloning of TEG-1 revealed that it is a homolog of mammalian CD2BP2, which has been implicated in a number of cellular processes, including in U4/U6.U5 tri-snRNP formation in the pre-mRNA splicing reaction. The position of teg-1 in the genetic pathway regulating the proliferation vs. differentiation decision, its single mutant phenotype, and its enrichment in nuclei, all suggest TEG-1 also functions as a splicing factor. TEG-1, as well as its human homolog, CD2BP2, directly bind to UAF-1 U2AF65, a component of the U2 auxiliary factor.
Conclusions
TEG-1 functions as a splicing factor and acts to regulate the proliferation vs. meiosis decision. The interaction of TEG-1 CD2BP2 with UAF-1 U2AF65, combined with its previously described function in U4/U6.U5 tri-snRNP, suggests that TEG-1 CD2BP2 functions in two distinct locations in the splicing cascade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.