Intraclonal diversification (ID) within the immunoglobulin (IG) genes expressed by B cell clones arises due to ongoing somatic hypermutation (SHM) in a context of continuous interactions with antigen(s). Defining the nature and order of appearance of SHMs in the IG genes can assist in improved understanding of the ID process, shedding light into the ontogeny and evolution of B cell clones in health and disease. Such endeavor is empowered thanks to the introduction of high-throughput sequencing in the study of IG gene repertoires. However, few existing tools allow the identification, quantification and characterization of SHMs related to ID, all of which have limitations in their analysis, highlighting the need for developing a purpose-built tool for the comprehensive analysis of the ID process. In this work, we present the immunoglobulin intraclonal diversification analysis (IgIDivA) tool, a novel methodology for the in-depth qualitative and quantitative analysis of the ID process from high-throughput sequencing data. IgIDivA identifies and characterizes SHMs that occur within the variable domain of the rearranged IG genes and studies in detail the connections between identified SHMs, establishing mutational pathways. Moreover, it combines established and new graph-based metrics for the objective determination of ID level, combined with statistical analysis for the comparison of ID level features for different groups of samples. Of importance, IgIDivA also provides detailed visualizations of ID through the generation of purpose-built graph networks. Beyond the method design, IgIDivA has been also implemented as an R Shiny web application. IgIDivA is freely available at https://bio.tools/igidiva
The term monoclonal B-cell lymphocytosis (MBL) describes the presence of a clonal B cell population with a count of less than 5 × 109/L and no symptoms or signs of disease. Based on the B cell count, MBL is further classified into 2 distinct subtypes: ‘low-count’ and ‘high-count’ MBL. High-count MBL shares a series of biological and clinical features with chronic lymphocytic leukemia (CLL), at least of the indolent type, and evolves to CLL requiring treatment at a rate of 1-2% per year, whereas ‘low-count’ MBL seems to be distinct, likely representing an immunological rather than a pre-malignant condition. That notwithstanding, both subtypes of MBL can carry ‘CLL-specific’ genomic aberrations such as cytogenetic abnormalities and gene mutations, yet to a much lesser extent compared to CLL. These findings suggest that such aberrations are mostly relevant for disease progression rather than disease onset, indirectly pointing to microenvironmental drive as a key contributor to the emergence of MBL. Understanding microenvironmental interactions is therefore anticipated to elucidate MBL ontogeny and, most importantly, the relationship between MBL and CLL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.