This retrospective multi-center matched cohort study assessed the risk for severe COVID-19 (combination of severity indicators), intensive care unit (ICU) admission, and in-hospital mortality in hospitalized patients when infected with the Omicron variant compared to when infected with the Delta variant. The study is based on a causal framework using individually-linked data from national COVID-19 registries. The study population consisted of 954 COVID-19 patients (of which, 445 were infected with Omicron) above 18 years old admitted to a Belgian hospital during the autumn and winter season 2021–2022, and with available viral genomic data. Patients were matched based on the hospital, whereas other possible confounders (demographics, comorbidities, vaccination status, socio-economic status, and ICU occupancy) were adjusted for by using a multivariable logistic regression analysis. The estimated standardized risk for severe COVID-19 and ICU admission in hospitalized patients was significantly lower (RR = 0.63; 95% CI (0.30; 0.97) and RR = 0.56; 95% CI (0.14; 0.99), respectively) when infected with the Omicron variant, whereas in-hospital mortality was not significantly different according to the SARS-CoV-2 variant (RR = 0.78, 95% CI (0.28–1.29)). This study demonstrates the added value of integrated genomic and clinical surveillance to recognize the multifactorial nature of COVID-19 pathogenesis.
We investigated effectiveness of (1) mRNA booster vaccination versus primary vaccination only and (2) heterologous (viral vector–mRNA) versus homologous (mRNA–mRNA) prime-boost vaccination against severe outcomes of BA.1, BA.2, BA.4 or BA.5 Omicron infection (confirmed by whole genome sequencing) among hospitalized COVID-19 patients using observational data from national COVID-19 registries. In addition, it was investigated whether the difference between the heterologous and homologous prime-boost vaccination was homogenous across Omicron sub-lineages. Regression standardization (parametric g-formula) was used to estimate counterfactual risks for severe COVID-19 (combination of severity indicators), intensive care unit (ICU) admission, and in-hospital mortality under exposure to different vaccination schedules. The estimated risk for severe COVID-19 and in-hospital mortality was significantly lower with an mRNA booster vaccination as compared to only a primary vaccination schedule (RR = 0.59 [0.33; 0.85] and RR = 0.47 [0.15; 0.79], respectively). No significance difference was observed in the estimated risk for severe COVID-19, ICU admission and in-hospital mortality with a heterologous compared to a homologous prime-boost vaccination schedule, and this difference was not significantly modified by the Omicron sub-lineage. Our results support evidence that mRNA booster vaccination reduced the risk of severe COVID-19 disease during the Omicron-predominant period.
We aimed to investigate vaccine effectiveness against progression to severe COVID-19 (acute respiratory distress syndrome (ARDS), intensive care unit (ICU) admission and/or death) and in-hospital death in a cohort of hospitalized COVID-19 patients. Mixed effects logistic regression analyses were performed to estimate the association between receiving a primary COVID-19 vaccination schedule and severe outcomes after adjusting for patient, hospital, and vaccination characteristics. Additionally, the effects of the vaccine brands including mRNA vaccines mRNA-1273 and BNT162b2, and adenovirus-vector vaccines ChAdOx1 (AZ) and Ad26.COV2.S (J&J) were compared to each other. This retrospective, multicenter cohort study included 2493 COVID-19 patients hospitalized across 73 acute care hospitals in Belgium during the time period 15 August 2021–14 November 2021 when the Delta variant (B1.617.2) was predominant. Hospitalized COVID-19 patients that received a primary vaccination schedule had lower odds of progressing to severe disease (OR (95% CI); 0.48 (0.38; 0.60)) and in-hospital death (OR (95% CI); 0.49 (0.36; 0.65)) than unvaccinated patients. Among the vaccinated patients older than 75 years, mRNA vaccines and AZ seemed to confer similar protection, while one dose of J&J showed lower protection in this age category. In conclusion, a primary vaccination schedule protects against worsening of COVID-19 to severe outcomes among hospitalized patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.