Buckwheat is a pseudocereal with high nutritional and nutraceutical properties. Although common buckwheat (Fagopyrum esculentum) is the main cultivated species, Tartary buckwheat (Fagopyrum tataricum) is gaining interest. In this paper, we compared plant growth, yield-related parameters and seed nutritional qualities of two varieties of F. esculentum and F. tataricum under field conditions in Belgium. Fagopyrum esculentum flowered earlier, produced less nodes, less branches, less inflorescences, but more flowers per inflorescence than F. tataricum. The yield was higher in F. tataricum, while the thousand-grain weight was higher in F. esculentum. Yield ranged between 2037 kg/ha and 3667 kg/ha depending on the species and year. Regarding nutritional qualities, seeds of F. esculentum contained more proteins (15.4% vs. 12.8%) than seeds of F. tataricum although their amino acid profile was similar. Seeds of F. esculentum contained also more Mg (1.36 vs. 1.15 mg/g dry weight (DW)) and less Fe (22.9 vs. 32.6 µg/g DW) and Zn (19.6 vs. 24.5 µg/g DW) than F. tataricum. The main difference between seed nutritional quality was the concentration of flavonoids that was 60 times higher in F. tataricum than in F. esculentum. Both species grow well under Belgian conditions and showed good seed quality.
Water availability is one of the main factors affecting crop production and the occurrence of drought periods is expected to increase in the context of ongoing climate change. We investigated the impact of water stress on two pseudocereal species, common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (Fagopyrum tataricum). Plants were grown under greenhouse conditions under two water regimes: control (40-50% soil humidity) and water stress (<20% soil humidity). Although closely related, both species differed by their resistance to water stress. The vegetative growth was affected in F. esculentum but not in F. tataricum as water stress decreased leaf production, leaf fresh, and dry weight, stomatal conductance, transpiration rate, and photosynthesis rate in the former but not in the latter. However, chlorophyll fluorescence parameters were not affected by water stress, whatever the species, and the chlorophyll content increased in water-stressed plants in both species.Oxidative stress was observed in both species in response to water stress, and antioxidant content was increased in F. tataricum. The reproductive phase was affected by water stress in both species: the number of inflorescences and pollen production decreased, mainly in F. esculentum. Seed set was maintained in F. tataricum while this parameter was not investigated in F. esculentum due to its self-incompatibility. Our results suggested that F. tataricum was more resistant to water stress than F. esculentum and that F. esculentum had characteristics of drought avoidance, while F. tataricum exhibited traits of drought tolerance. | INTRODUCTIONIn the face of climate change, extreme events, such as drought are expecting to become more frequent and more intense (IPCC, 2014). It will have many negative impacts on crop production. Indeed, water availability is one of the main factors impacting crop production (Barnabás et al., 2008;Gray and Brady, 2016). When the water supply is inferior to the water demand, plants encounter water stress (Salehi-Lisar and Bakhshayeshan-Agdam, 2016). Water stress can have many impacts on plants at every life stage. It can decrease the germination rate (
The use of orphan crops could mitigate the effects of climate change and improve the quality of food security. We compared the effects of drought, high temperature, and their combination in 12 varieties of Tartary buckwheat (Fagopyrum tataricum). Plants were grown at 21/19 °C or 28/26 °C under well-watered and water-stressed conditions. Plants were more discriminated according to environmental conditions than variety, with the exception of Islek that was smaller and produced fewer leaves, inflorescences, and seeds than the other varieties. The combination of high temperature and water stress had a stronger negative impact than each stress applied separately. The temperature increase stimulated leaf and flower production while water stress decreased plant height. Leaf area decreased with both temperature and water stress. High temperature hastened the seed initiation but negatively affected seed development such that almost all seeds aborted at 28 °C. At 21 °C, water stress significantly decreased the seed production per plant. At the physiological level, water stress increased the chlorophyll content and temperature increased the transpiration rate under well-watered conditions. High temperature also increased the polyphenol and flavonoid concentrations, mainly in the inflorescences. Altogether, our results showed that water stress and temperature increase in particular negatively affected seed production in F. tataricum.
Tabulated data on plants in Venezuela that are toxic to livestock are presented in this chapter. Information on toxic effects is included. The extraction of compounds with insecticidal properties from these plants is mentioned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.