Expansion microscopy (EM) is an emerging approach for morphological examination of biological specimens at nanoscale resolution using conventional optical microscopy. To achieve physical separation of cell structures, tissues are embedded in a swellable polymer and expanded several fold in an isotropic manner. This work shows the development and optimization of physical tissue expansion as a new method for spatially resolved large-scale proteomics. Herein we established a novel method to enlarge the tissue section to be compatible with manual microdissection on regions of interest and MS-based proteomic analysis. A major issue in expansion microscopy is the loss of protein information during the mechanical homogenization phase due to the use of proteinase K. For isotropic expansion, different homogenization agents were investigated, both to maximize protein identification and to minimize protein diffusion. Best results were obtained with SDS for homogenization. Using our modified protocol, we were able to enlarge a tissue section more than 3-fold and identified up to 655 proteins from 1 mm in size after expansion, equivalent to 330 μm in their real size corresponding thus to an average of 260 cells. This approach can be performed easily without any expensive sampling instrument. We demonstrated the compatibility of sample preparation for expansion microscopy and proteomic study in a spatial context.
Molecular heterogeneity is a key feature of glioblastoma that impedes patient stratification and leads to large discrepancies in mean patient survival. Here, we analyze a cohort of 96 glioblastoma patients with survival ranging from a few months to over 4 years. 46 tumors are analyzed by mass spectrometry-based spatially-resolved proteomics guided by mass spectrometry imaging. Integration of protein expression and clinical information highlights three molecular groups associated with immune, neurogenesis, and tumorigenesis signatures with high intra-tumoral heterogeneity. Furthermore, a set of proteins originating from reference and alternative ORFs is found to be statistically significant based on patient survival times. Among these proteins, a 5-protein signature is associated with survival. The expression of these 5 proteins is validated by immunofluorescence on an additional cohort of 50 patients. Overall, our work characterizes distinct molecular regions within glioblastoma tissues based on protein expression, which may help guide glioblastoma prognosis and improve current glioblastoma classification.
SUMMARYMolecular heterogeneities are a key feature of glioblastoma (GBM) pathology impeding patient’s stratification and leading to high discrepancies between patients mean survivals. Here, we established a molecular classification of GBM tumors using a pan-proteomic analysis. Then, we identified, from our proteomic data, 2 clusters of biomarkers associated with good or bad patient survival from 46 IDH wild-type GBMs. Three molecular groups have been identified and associated with systemic biology analyses. Group A tumors exhibit neurogenesis characteristics and tumorigenesis. Group B shows a strong immune cell signature and express poor prognosis markers while group C tumors are characterized by an anti-viral signature and tumor growth proteins. 124 proteins were found statistically different based on patient’s survival times, of which 10 are issued from alternative AltORF or non-coding RNA. After statistical analysis, a panel of markers associated to higher survival (PPP1R12A, RPS14, HSPD1 and LASP1) and another panel associated to lower survival (ALCAM, ANXA11, MAOB, IP_652563 and IGHM) has been validated by immunofluorescence. Taken together, our data will guide GBM prognosis and help to improve the current GBM classification by stratifying the patients and may open new opportunities for therapeutic development.SignificanceGlioblastoma are very heterogeneous tumors with median survivals usually inferior to 20 months. We conducted a pan-proteomics analysis of glioblastoma (GBM) in order to stratify GBM based on the molecular contained. Forty-six GBM cases were classified into three groups where proteins are involved in specific pathways i.e. the first group has a neurogenesis signature and is associated with a better prognosis while the second group of patients has an immune profile with a bad prognosis. The third group is more associated to tumorigenesis. We correlated these results with the TCGA data. Finally, we have identified 28 new prognostic markers of GBM and from these 28, a panel of 4 higher and 5 lower survival markers were validated. With these 9 markers in hand, now pathologist can stratify GBM patients and can guide the therapeutic decision.HighlightsA novel stratification of glioblastoma based on mass spectrometry was established.Three groups with different molecular features and survival were identified.This new classification could improve prognostication and may help therapeutic options.8 prognosis markers for oncologist therapeutic decision have been validated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.