Purpose: If immune cells are involved in tumor surveillance and have a prognostic impact in most primary tumors, little is known about their significance in metastases. Because patients' survival is heterogeneous, even at metastatic stages, we hypothesized that immune cells may be involved in the control of metastases. We therefore characterized the tumor immune microenvironment and its prognostic value in colorectal and renal cell carcinoma (RCC) metastases, and compared it to primary tumors.Experimental Design: We analyzed by immunohistochemistry (n ¼ 192) and qPCR (n ¼ 32) the immune environments of colorectal carcinoma and RCC lung metastases.Results: Metastases from colorectal carcinoma and RCC have different immune infiltrates. Higher densities of DC-LAMP þ mature dendritic cells (P < 0.0001) and lower densities of NKp46 þ NK cells (P < 0.0001) were observed in colorectal carcinoma as compared to RCC metastases, whereas densities of T cells were similar. High densities of CD8 þ and DC-LAMP þ cells correlated with longer overall survival (OS) in colorectal carcinoma (P ¼ 0.008) and shorter OS in RCC (P < 0.0001). High NK-cell densities were associated with improved survival in RCC (P ¼ 0.002) but not in colorectal carcinoma. Densities of immune cells correlated significantly from primary to relapsing metastases for the same patient. A T H 1 orientation was found in colorectal carcinoma metastases, whereas a heterogeneous immune gene expression was found in RCC metastases.
Tissue-resident memory T cells (Trm) represent a new subset of long-lived memory T cells that remain in tissue and do not recirculate. Although they are considered as early immune effectors in infectious diseases, their role in cancer immunosurveillance remains unknown. In a preclinical model of head and neck cancer, we show that intranasal vaccination with a mucosal vector, the B subunit of Shiga toxin, induces local Trm and inhibits tumour growth. As Trm do not recirculate, we demonstrate their crucial role in the efficacy of cancer vaccine with parabiosis experiments. Blockade of TFGβ decreases the induction of Trm after mucosal vaccine immunization, resulting in the lower efficacy of cancer vaccine. In order to extrapolate this role of Trm in humans, we show that the number of Trm correlates with a better overall survival in lung cancer in multivariate analysis. The induction of Trm may represent a new surrogate biomarker for the efficacy of cancer vaccine. This study also argues for the development of vaccine strategies designed to elicit them.
Although circumcision reduces male acquisition of human immunodeficiency virus type-1 (HIV-1) by 60%, the initial mechanisms of HIV-1 transmission at the foreskin remain elusive. We have established two novel and complementary models of the human adult foreskin epithelium, namely, ex vivo foreskin explants and in vitro reconstructed immunocompetent foreskins. In these models, efficient HIV-1 transmission occurs after 1 h of polarized exposure of the inner, but not outer, foreskin to mononuclear cells highly infected with HIV-1, but not to cell-free virus. HIV-1-infected cells form viral synapses with apical foreskin keratinocytes, leading to polarized budding of HIV-1, which is rapidly internalized by Langerhans cells (LCs) in the inner foreskin. In turn, LCs migrate toward the epidermis-dermis interface to form conjugates with T cells, thereby transferring HIV-1. Seminal plasma mixed with cervicovaginal secretions inhibits HIV-1 translocation. This set of results rationalizes at the cellular level the apparent protective outcome of circumcision against HIV-1 acquisition by men.
Adult soft tissue sarcomas (STS) are rare tumours of mesenchymal lineage. Based on cytogenetic and comparative genomic hybridization (CGH) data, they can be divided into 'STS with simple genomics', displaying a characteristic genetic alteration, and 'STS with complex genomics' (SCG), where multiple genomic alterations occur. This latter group is mostly composed of leiomyosarcomas (LMS) and pleiomorphic undifferentiated tumours previously labelled as 'malignant fibrous histiocytomas' (MFH), corresponding in fact to myxofibrosarcomas (MFS), pleiomorphic liposarcomas/rhabdomyosarcomas (P-LPS, P-RMS), and undifferentiated pleiomorphic sarcomas (UPS). Their pathobiology is still not well understood, leading to challenges in diagnosis and therapeutic management. We report here a comprehensive study encompassing array-CGH and transcriptome analysis data of a large series of 160 SCG. Non-supervised clustering of transcriptome data led to the identification of five groups of tumours, one of them (group A) corresponding to well-differentiated LMS and the other four (B-E) to 'MFH' and poorly differentiated LMS. Welch analysis of transcriptome data in these groups allowed us to retrieve several genes of potential interest. Among them, RB1 alteration is a constant thread in SCG, often associated with RBL2 loss. PTEN tumour suppressor deletion would also stand out as a major recurrent event, especially in groups A, C, and D. The WNT canonical pathway could be potentially involved, as demonstrated by up-regulation of one of its inhibitors, DKK1, in groups D and E, whereas DKK1 is significantly down-regulated in groups A, B, and C. These data suggest a very complex interplay between pathways downstream of PTEN and the WNT canonical pathway, providing new hints about SCG pathobiology and their potential therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.