Distinct forms of memory can be highlighted using different training protocols. In Drosophila olfactory aversive learning, one conditioning session triggers memory formation independently of protein synthesis, while five spaced conditioning sessions lead to the formation of long-term memory (LTM), a long-lasting memory dependent on de novo protein synthesis. In contrast, one session of odour-sugar association appeared sufficient for the fly to form LTM. We designed and tuned an apparatus that facilitates repeated discriminative conditioning by alternate presentations of two odours, one being associated with sugar, as well as a new paradigm to test sugar responsiveness (SR). Our results show that both SR and short-term memory (STM) scores increase with starvation length before conditioning. The protein dependency of appetitive LTM is independent of the repetition and the spacing of training sessions, on the starvation duration and on the strength of the unconditioned stimulus. In contrast to a recent report, our test measures an abnormal SR of radish mutant flies, which might initiate their STM and LTM phenotypes. In addition, our work shows that crammer and tequila mutants, which are deficient for aversive LTM, present both an SR and an appetitive STM defect. Using the MB247-P[switch] system, we further show that tequila is required in the adult mushroom bodies for normal sugar motivation.
In fall, Myzus persicae (Sulzer) (Homoptera: Aphididae) may exhibit population resurgence in winter oilseed rape in France. This resurgence may arise from pyrethroid treatments against Coleoptera (Psylliodes chrysocephala L.) that either kill parasitoids present during treatment or prevent recolonization by off-crop parasitoids. We studied the impact of Diaeretiella rapae (M'Intosh) (Hymenoptera: Braconidae) on populations of M. persicae when parasitoids were introduced on deltamethrin-treated plants at increasing intervals after treatment. Parasitoids were introduced 1, 2, 7, or 14 d posttreatment on individually caged plants infested with established populations of M. persicae. Aphids were counted 7, 14 and 21 d after parasitoid introduction. First, we observed that both the pesticide and the parasitoid reduced aphid population growth and that their effects were additive. Second, there was no mortality of parasitoids exposed to treated leaves in a device with a refuge area, and only 20% of mortality without the refuge area. Furthermore, deltamethrin residues had no effect on the reproduction of D. rapae females. Compared with the known toxicity of deltamethrin to D. rapae on glass, this low mortality may have been due to both the high liposolubility of deltamethrin (leading to a rapid diffusion of residues in the oilseed rape leaf cuticle) and to the existence of a refuge area. This work suggests that D. rapae could limit populations of M. persicae in the fall, even after pyrethroid treatment, because the presence of deltamethrin residues had little impact on the parasitoid.
In many parasitoid species, the recognition of chemical signals is essential to find specific hosts. This function is often impaired by exposure to insecticides that are usually neurotoxic. The behaviour of the Hymenopterous parasitoid Aphidius ervi (Haliday) (Hymenoptera: Aphidiinae) after surviving low doses of the pyrethroid lambda-cyhalothrin was examined in laboratory conditions. The host aphid was Myzus persicae (Sulzer) (Homoptera: Aphididae) on oilseed rape. Parasitoid females were exposed by contact with dry residues of the active ingredient at a lethal dose, LD20, and a sub-lethal dose, LD0.1. In a four-armed olfactometer, untreated and inexperienced females were attracted by the odour of M. persicae-infested plants and previous oviposition experience increased the duration of the attraction response. The response of inexperienced females decreased after an exposure to LD0.1 but not to LD20. No effect was observed when females had an oviposition experience prior to the olfactometer test. The oviposition activity was significantly decreased in the LD20-treated group but not in the LD0.1-treated one. All effects disappeared within 24h. Our work shows that orientation and oviposition behaviours may be impaired by low doses of lambda-cyhalothrin, depending on the dose, the parasitoid experience and the type of behaviour.
Bracoviruses are domesticated viruses found in parasitic wasp genomes. They are composed of genes of nudiviral origin involved in particle production and proviral segments encoding virulence genes necessary for parasitism success. During particle production, proviral segments are amplified and individually packaged as DNA circles in nucleocapsids. These particles are injected by parasitic waspstogether with their eggs into host larvae. Bracovirus circles of two wasp species were reported toundergo chromosomal integration in parasitized host hemocytes, through a conserved sequence named Host Integration Motif (HIM). Here, we used bulk Illumina sequencing to survey integrations of Cotesia typhae bracovirus circles in the DNA of its host, the maize corn borer ( Sesamia nonagrioides ) seven days after parasitism. First, assembly and annotation of a high-quality genome for C. typhae enabled us to characterize 27 proviral segments clustered in proviral loci. Using these data, we characterized large numbers of chromosomal integrations (from 12 to 85 events per host haploid genome) for all 16 bracovirus circles containing a HIM. Integrations were found in four S. nonagrioides tissues and in the body of a caterpillar in which parasitism had failed. The 12 remaining circles do not integrate but are maintained at high levels in host tissues. Surprisingly, we found that HIM-mediated chromosomal integration has occurred at least six times accidentally in thewasp germline during evolution. Overall, our study furthers our understanding of wasp-host genome interactions and supports HIM-mediated chromosomal integration as a possible mechanism ofhorizontal transfer from wasps to their hosts. Importance Bracoviruses are endogenous domesticated viruses of parasitoid wasps that are injected together with wasp eggs into wasp host larvae during parasitism. Several studies have shown that some DNA circles packaged into bracovirus particles become integrated into host somatic genomes during parasitism, but the phenomenon has never been studied using non-targeted approaches. Here we use bulk Illumina sequencing to systematically characterize and quantify bracovirus circle integrations that occur in four tissues of the Mediterranean corn borer ( Sesamia nonagrioides ) during parasitism by the Cotesia typhae wasp. Our analysis reveals that all circles containing a host integration motif (HIM) integrate at substantial levels (from 12 to 85 integrations per host cell in total) in all tissues while other circles do not integrate. In addition to shedding new light on wasp-bracovirus-host interaction, our study supports HIM-mediated chromosomal integration of bracovirus as a possible source of wasp-to-host horizontal transfer with long term evolutionary consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.