Environmental exposure to tricresyl phosphate (TCP) may lead to severe neurotoxic effects, including organophosphate (OP)-induced delayed neuropathy. TCP has three symmetric isomers, distinguished by the methyl group position on the aromatic ring system. One of these isomers, tri-ortho-cresyl phosphate (ToCP), has been reported for years as a neuropathic OP, targeting neuropathic target esterase (NTE/PNPLA6), but its mode of toxic action had not been fully elucidated. Zebrafish eleuthero-embryo and larva were used to characterize the differential action of the TCP isomers. The symmetric isomers inhibited phenyl valerate (PV)-NTE enzymatic activity in vivo with different IC50, while no effect was observed on acetylcholinesterase activity. Moreover, the locomotor behavior was also affected by tri-para-cresyl phosphate and tri-meta-cresyl phosphate, only ToCP exposure led to locomotor hyperactivity lasting several hours, associated with defects in the postural control system and an impaired phototactic response, as revealed by the visual motor response test. The electric field pulse motor response test demonstrated that a seizure-like, multiple C-bend-spaghetti phenotype may be significantly induced by ToCP only, independently of any inhibition of PV-NTE activity. Eleuthero-embryos exposed to picrotoxin, a known gamma-aminobutyric acid type-A receptor inhibitor, exhibited similar adverse outcomes to ToCP exposure. Thus, our results demonstrated that the TCP mode of toxic action was isomer specific and not initially related to modulation of PV-NTE activity. Furthermore, it was suggested that the molecular events involved were linked to an impairment of the balance between excitation and inhibition in neuronal circuits.
Organophosphorus (OP) cholinesterase inhibitors, which include insecticides and chemical warfare nerve agents, are very potent neurotoxicants. Given that the actual treatment has several limitations, the present study provides a general method, called the zebrafish-OP-antidote test (ZOAT), and basic scientific data, to identify new antidotes that are more effective than the reference pyridinium oximes after acute OP poisoning. The reactivation capacity of a chemical compound can be measured using in vivo and ex vivo acetylcholinesterase (AChE) assays. We demonstrated that it is possible to differentiate between chemical compound protective efficacies in the central and peripheral nervous system via the visual motor response and electric field pulse motor response tests, respectively. Moreover, the ability to cross the brain-blood barrier can be estimated in a physiological context by combining an AChE assay on the head and trunk-tail fractions and the cellular and tissue localization of AChE activity in the whole-mount animal. ZOAT is an innovative method suitable for the screening and rapid identification of chemicals and mixtures used as antidote for OP poisoning. The method will make it easier to identify more effective medical countermeasures for chemical threat agents, including combinatorial therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.