Most of the previous approaches surrounding collaborative information retrieval (CIR) provide either a user-based mediation, in which the system only supports users' collaborative activities, or a system-based mediation, in which the system plays an active part in balancing user roles, reranking results, and distributing them to optimize overall retrieval performance. In this paper, we propose to combine both of these approaches by a role mining methodology that learns from users' actions about the retrieval strategy they adapt. This hybrid method aims at showing how users are di↵erent and how to use these di↵erences for suggesting roles. The core of the method is expressed as an algorithm that (1) monitors users' actions in a CIR setting; (2) discovers di↵erences among the collaborators along certain dimensions; and (3) suggests appropriate roles to make the most out of individual skills and optimize IR performance. Our approach is empirically evaluated and relies on two di↵erent laboratory studies involving 70 pairs of users. Our experiments show promising results that highlight how role mining could optimize the collaboration within a search session. The contributions of this work include a new algorithm for mining user roles in collaborative IR, an evaluation methodology, and a new approach to improve IR performance with the operationalization of user-driven system-mediated collaboration.
Many medical tasks such as self-diagnosis, health-care assessment, and clinical trial patient recruitment involve the usage of information access tools. A key underlying step to achieve such tasks is the document-to-document matching which mostly fails to bridge the gap identified between raw level representations of information in documents and high-level human interpretation. In this paper, we study how to optimize the document representation by leveraging neural-based approaches to capture latent representations built upon both validated medical concepts specified in an external resource as well as the used words. We experimentally show the effectiveness of our proposed model used as a support of two different medical search tasks, namely health search and clinical search for cohorts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.