SUMMARY BackgroundThe role of the gut microbiota in patho-physiology of irritable bowel syndrome (IBS) is suggested by several studies. However, standard cultural and molecular methods used to date have not revealed specific and consistent IBS-related groups of microbes.
Background Alterations of intestinal microbiota and hypersensitivity to colonic distension are two features of the irritable bowel syndrome (IBS). However, the role of intestinal microbiota in visceral hypersensitivity of IBS patients is far to be established. The aim of our study was to determine whether the intestinal microbiota is involved in the visceral hypersensitivity in IBS. Methods The painful response to colorectal distension and colonic mucosal parameters were assessed in gnotobiotic rats. Germfree (GF) rats were inoculated with the fecal microbiota from IBS patients characterized by hypersensitivity to colorectal distension (IBS HMA rats) or from non-hypersensitive healthy volunteers (Healthy HMA rats). Conventional rats were studied as normosensitivity control. Fecal microbial analyses were carried out in human and HMA rats fecal samples using cultural and molecular approaches. Key Results The microbial dysbiosis of the IBS gut microbiota (more sulfate-reducing bacteria and Enterobacteriaceae and less bifidobacteria) could be maintained in gnotobiotic rats. The number of abdominal contractions in response to colorectal distensions was significantly higher in IBS HMA rats than in healthy HMA rats. No difference was observed between healthy HMA and conventional rats. Colorectal compliance, epithelial paracellular permeability, and density of colonic mucosal mast cells were similar in the three groups of rats. Conclusions & Inferences We herein showed that sensitivity to colonic distension of IBS patients can be transferred to rats by the fecal microbiota. Mucosal alterations associated with microbiota transfer are not involved in this hypersensitivity. The altered IBS microbiota may have important role in the hypersensitivity characterizing IBS patients through specific bacterial metabolites.
Enterococci, in particular vancomycin-resistant enterococci (VRE), are a leading cause of hospital-acquired infections. Promoting intestinal resistance against enterococci could reduce the risk of VRE infections. We investigated the effects of two Lactobacillus strains to prevent intestinal VRE. We used an intestinal colonisation mouse model based on an antibiotic-induced microbiota dysbiosis to mimic enterococci overgrowth and VRE persistence. Each Lactobacillus spp. was administered daily to mice starting one week before antibiotic treatment until two weeks after antibiotic and VRE inoculation. Of the two strains, Lactobacillus paracasei CNCM I-3689 decreased significantly VRE numbers in the feces demonstrating an improvement of the reduction of VRE. Longitudinal microbiota analysis showed that supplementation with L. paracasei CNCM I-3689 was associated with a better recovery of members of the phylum Bacteroidetes. Bile salt analysis and expression analysis of selected host genes revealed increased level of lithocholate and of ileal expression of camp (human LL-37) upon L. paracasei CNCM I-3689 supplementation. Although a direct effect of L. paracasei CNCM I-3689 on the VRE reduction was not ruled out, our data provide clues to possible anti-VRE mechanisms supporting an indirect anti-VRE effect through the gut microbiota. This work sustains non-antibiotic strategies against opportunistic enterococci after antibiotic-induced dysbiosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.