The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point‐in‐time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15540. Nuclear hormone receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein‐coupled receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid‐2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC‐IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Context Previous case reports associated prepubertal gynecomastia with lavender-containing fragrances, but there appear to be no reports of premature thelarche. Objective To add to a case series about lavender-fragranced product use and breast growth in children and to measure endocrine-disrupting chemical activity of essential oil components. Design, Setting, and Patients Patients experiencing premature thelarche or prepubertal gynecomastia with continuous exposure to lavender-fragranced products were evaluated in the pediatric endocrinology departments of two institutions. Mechanistic in vitro experiments using eight components of lavender and other essential oils were performed at National Institute of Environmental Health Sciences. Main Outcome Measures Case reports and in vitro estrogen and androgen receptor gene expression activities in human cell lines with essential oils. Results Three prepubertal girls and one boy with clinical evidence of estrogenic action and a history of continuous exposure to lavender-containing fragrances were studied. Breast growth dissipated in all patients with discontinuation of the fragranced products. Some of the components tested elicited estrogenic and antiandrogenic properties of varying degrees. Conclusion We report cases of premature thelarche that resolved upon cessation of lavender-containing fragrance exposure commonly used in Hispanic communities. The precise developmental basis for such conditions could be multifactorial. In vitro demonstration of estrogenic and antiandrogenic properties of essential oil components suggests essential oils in these cases could be considered a possible source and supports a possible link with idiopathic prepubertal breast development. Whether the level of lavender oil estrogenic potency is sufficient to cause these effects is unknown.
SUMMARY Conjugated estrogens (CE) delay the onset of type 2 diabetes (T2D) in postmenopausal women, but the mechanism is unclear. In T2D, the endoplasmic reticulum (ER) fails to promote proinsulin folding and, in failing to do so, promotes ER stress and βcell dysfunction. We show that CE prevent insulin-deficient diabetes in male and in female Akita mice using a model of misfolded proinsulin. CE stabilize the ER-associated protein degradation (ERAD) system and promote misfolded proinsulin proteasomal degradation. This involves activation of nuclear and membrane estrogen receptor-α (ERα), promoting transcriptional repression and proteasomal degradation of the ubiquitin-conjugating enzyme and ERAD degrader, UBC6e. The selective ERα modulator bazedoxifene mimics CE protection of β cells in females but not in males. In Brief Estrogens prevent diabetes in women, but the mechanism is poorly understood. Xu et al. report that estrogens activate the endoplasmic-reticulum-associated protein degradation pathway, which promotes misfolded proinsulin degradation, suppresses endoplasmic reticulum stress, and protects insulin secretion in mice and in human pancreatic β cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.