Drinking water contamination with poly- and perfluoroalkyl substances (PFASs) poses risks to the developmental, immune, metabolic, and endocrine health of consumers. We present a spatial analysis of 2013–2015 national drinking water PFAS concentrations from the U.S. Environmental Protection Agency’s (US EPA) third Unregulated Contaminant Monitoring Rule (UCMR3) program. The number of industrial sites that manufacture or use these compounds, the number of military fire training areas, and the number of wastewater treatment plants are all significant predictors of PFAS detection frequencies and concentrations in public water supplies. Among samples with detectable PFAS levels, each additional military site within a watershed’s eight-digit hydrologic unit is associated with a 20% increase in PFHxS, a 10% increase in both PFHpA and PFOA, and a 35% increase in PFOS. The number of civilian airports with personnel trained in the use of aqueous film-forming foams is significantly associated with the detection of PFASs above the minimal reporting level. We find drinking water supplies for 6 million U.S. residents exceed US EPA’s lifetime health advisory (70 ng/L) for PFOS and PFOA. Lower analytical reporting limits and additional sampling of smaller utilities serving <10000 individuals and private wells would greatly assist in further identifying PFAS contamination sources.
Per- and polyfluoroalkyl substances (PFASs) are highly persistent synthetic chemicals, some of which have been associated with cancer, developmental toxicity, immunotoxicity, and other health effects. PFASs in grease-resistant food packaging can leach into food and increase dietary exposure. We collected ~400 samples of food contact papers, paperboard containers, and beverage containers from fast food restaurants throughout the United States and measured total fluorine using particle-induced γ-ray emission (PIGE) spectroscopy. PIGE can rapidly and inexpensively measure total fluorine in solid-phase samples. We found that 46% of food contact papers and 20% of paperboard samples contained detectable fluorine (>16 nmol/cm2). Liquid chromatography/high-resolution mass spectrometry analysis of a subset of 20 samples found perfluorocarboxylates, perfluorosulfonates, and other known PFASs and/or unidentified polyfluorinated compounds (based on nontargeted analysis). The total peak area for PFASs was higher in 70% of samples (10 of 14) with a total fluorine level of >200 nmol/cm2 compared to six samples with a total fluorine level of <16 nmol/cm2. Samples with high total fluorine levels but low levels of measured PFASs may contain volatile PFASs, PFAS polymers, newer replacement PFASs, or other fluorinated compounds. The prevalence of fluorinated chemicals in fast food packaging demonstrates their potentially significant contribution to dietary PFAS exposure and environmental contamination during production and disposal.
Communities across the U.S. are discovering drinking water contaminated by perfluoroalkyl and polyfluoroalkyl substances (PFAS) and determining appropriate actions. There are currently no federal PFAS drinking water standards despite widespread drinking water contamination, ubiquitous population-level exposure, and toxicological and epidemiological evidence of adverse health effects. Absent federal PFAS standards, multiple U.S. states have developed their own health-based water guideline levels to guide decisions about contaminated site cleanup and drinking water surveillance and treatment. We examined perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) water guideline levels developed by the U.S. Environmental Protection Agency (EPA) and state agencies to protect people drinking the water, and summarized how and why these levels differ. We referenced documents and tables released in June 2018 by the Interstate Technology and Regulatory Council (ITRC) to identify states that have drinking water and groundwater guideline levels for PFOA and/or PFOS that differ from EPA’s health advisories (HAs). We also gathered assessment documents from state websites and contacted state environmental and health agencies to identify and confirm current guidelines. Seven states have developed their own water guideline levels for PFOA and/or PFOS ranging from 13 to 1000 ng/L, compared to EPA’s HA of 70 ng/L for both compounds individually or combined. We find that the development of PFAS guideline levels via exposure and hazard assessment decisions is influenced by multiple scientific, technical, and social factors, including managing scientific uncertainty, technical decisions and capacity, and social, political, and economic influences from involved stakeholders. Assessments by multiple states and academic scientists suggest that EPA’s HA is not sufficiently protective. The ability of states to develop their own guideline levels and standards provides diverse risk assessment approaches as models for other state and federal regulators, while a sufficiently protective, scientifically sound, and enforceable federal standard would provide more consistent protection.
We characterized the lability and bioaccessibility of Zn, Pb, and Cd in size-fractionated mine waste at the Tar Creek Superfund Site (Oklahoma) to assess the potential for metal transport, exposure, and subsequent bioavailability. Bulk mine waste samples contained elevated Zn (9100 +/- 2500 ppm), Pb (650 +/- 360 ppm), and Cd (42 +/- 10 ppm), while particles with the greatest potential for windborne transport and inhalation (< 10 microm) contained substantially higher concentrations, up to 220 000 ppm Zn, 16 000 ppm Pb, and 530 ppm Cd in particles < 1 microm. Although the mined ore at Tar Creek primarily consisted of refractory metal sulfides with low bioavailability, sequential extractions and physiologically based extractions indicate that physical and chemical weathering have shifted metals into relatively labile and bioaccessible mineral phases. In < 37 microm mine waste particles, 50-65% of Zn, Pb, and Cd were present in the "exchangeable" and "carbonate" sequential extraction fractions, and 60-80% of Zn, Pb, and Cd were mobilized in synthetic gastric fluid, while ZnS and PbS exhibited minimal solubility in these solutions. Our results demonstrate the importance of site-specific characterization of size-fractionated contemporary mine waste when assessing the lability and bioavailability of metals at mine-waste impacted sites.
Approximately 40% of U.S. residents rely on groundwater as a source of drinking water. Groundwater, especially unconfined sand and gravel aquifers, is vulnerable to contamination from septic systems and infiltration of wastewater treatment plant effluent. In this study, we characterized concentrations of pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds (OWCs) in the unconfined sand and gravel aquifer of Cape Cod, Massachusetts, USA, where septic systems are prevalent. Raw water samples from 20 public drinking water supply wells on Cape Cod were tested for 92 OWCs, as well as surrogates of wastewater impact. Fifteen of 20 wells contained at least one OWC; the two most frequently-detected chemicals were sulfamethoxazole (antibiotic) and perfluorooctane sulfonate (perfluorosurfactant). Maximum concentrations of sulfamethoxazole (113 ng/L) and the anticonvulsant phenytoin (66 ng/L) matched or exceeded maximum reported concentrations in other U.S. public drinking water sources. The sum of pharmaceutical concentrations and the number of detected chemicals were both significantly correlated with nitrate, boron, and extent of unsewered residential and commercial development within 500 m, indicating that wastewater surrogates can be useful for identifying wells most likely to contain OWCs. Septic systems appear to be the primary source of OWCs in Cape Cod groundwater, although wastewater treatment plants and other sources were potential contributors to several wells. These results show that drinking water supplies in unconfined aquifers where septic systems are prevalent may be among the most vulnerable to OWCs. The presence of mixtures of OWCs in drinking water raises human health concerns; a full evaluation of potential risks is limited by a lack of health-based guidelines and toxicity assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.