Beak and feather disease virus (BFDV) causes the highly contagious, in some cases fatal, psittacine beak and feather disease in parrots. The European continent has no native parrots, yet in the past has been one of the world's biggest importers of wild-caught exotic parrot species. Following the banning of this practice in 2007, the demand for exotic pet parrots has largely been met by established European breeding facilities, which can also supply buyers outside Europe. However, the years of unregulated importation have provided numerous opportunities for BFDV to enter Europe, meaning the likelihood of birds within captive breeding facilities being BFDV positive is high. This study examined the BFDV status of such facilities in Poland, a country previously shown to have BFDV among captive birds. A total of 209 birds from over 50 captive breeding facilities across Poland were tested, and 43 birds from 18 different facilities tested positive for BFDV. The full BFDV genomes from these 43 positive birds were determined, and phylogenetic analysis revealed that these samples harboured a relatively high degree of diversity and that they were highly recombinant. It is evident that there have been multiple introductions of BFDV into Poland over a long period of time, and the close association of different species of birds in the captive environment has probably facilitated the evolution of new BFDV strains through recombination.
Beak and feather disease virus (BFDV) infections are often fatal to both captive and wild parrot populations. Its recent discovery in a wild population of native red-fronted parakeets has raised concerns for the conservation of native parrots, all of which are threatened or endangered. The question of a recent introduction versus a native genotype of the virus poses different conservation-management challenges, and thus, a clear understanding of the molecular phylogeny of BDFV is a crucial step towards integrated management planning. This study represents the first comprehensive attempt to screen New Zealand's endangered and threatened psittacines systematically for BFDV. We sampled and screened kakapos (Strigops habroptilus), kakas (Nestor meridionalis), keas (N. notabilis), Chatham parakeets (Cyanoramphus forbesi), Malherbe's parakeets (Cyanoramphus malherbi), yellow-crowned parakeets (C. auriceps) and red-fronted parakeets (Cyanoramphus novaezelandiae), as well as eastern rosellas (Platycercus eximius), an introduced species that is now common throughout the North Island, for BFDV. Out of all species and populations sampled (786 individuals), we found 16 BFDV-positive red-fronted parakeets from Little Barrier Island/Hauturu, seven eastern rosellas from the Auckland region, and eight yellow-crowned parakeets from the Eglinton Valley in the South Island. The full genomes of the viral isolates from the red-fronted parakeets share 95-97 % sequence identity to those from the invasive eastern rosellas and 92.7-93.4 % to those isolates from the South Island yellow-crowned parakeets. The yellow-crowned parakeet BFDV isolates share 92-94 % sequence identity with those from eastern rosellas. The low level of diversity among all BFDV isolates from red-fronted parakeets could suggest a more recent infection among these birds compared to the yellow-crowned parakeets, whereas the diversity in the eastern rosellas indicates a much more established infection. Pro-active screening and monitoring of BFDV infection rates in aviaries as well as in wild populations are necessary to limit the risk of transmission among threatened and endangered parrot populations in New Zealand.
Pigeon circovirus (PiCV) has a~2 kb genome circular ssDNA genome. All but one of the known PiCV isolates have been found infecting pigeons in various parts of the world. In this study, we screened 324 swab and tissue samples from Polish pigeons and recovered 30 complete genomes, 16 of which came from birds displaying no obvious pathology. Together with 17 other publicly available PiCV complete genomes sampled throughout the Northern Hemisphere and Australia, we find that PiCV displays a similar degree of genetic diversity to that of the related psittacine-infecting circovirus species, beak and feather disease virus (BFDV). We show that, as is the case with its pathology and epidemiology, PiCV also displays patterns of recombination, genomic secondary structure and natural selection that are generally very similar to those of BFDV. It is likely that breeding facilities play a significant role in the emergence of new recombinant PiCV variants and given that~50 % of the domestic pigeon population is infected subclinically, all pigeon breeding stocks should be screened routinely for this virus. The GenBank/EMBL/DDBJ accession numbers for the pigeon circovirus genomes determined in this study are KF738843-KF738872. One supplementary table and two supplementary figures are available with the online version of this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.