It has been demonstrated that wound dressings provide a protective effect against pressure injuries. However, no method exists to measure either the life or performance of dressings used in prevention; testing dressings in a clinical setting or a research environment has typically been based on measuring its moisture absorption capacity. This article examines the changes that occur in the structural and mechanical properties of a prophylactic dressing based on conditions of use when wound exudate is not present. A clinically relevant method was developed to simulate the loading, friction-inducing shear, and moisture transpiration present in a typical hospitalization where a dressing is applied for prevention. Single-use dressings were tested using this method to evaluate their ability to protect patients from pressure injuries throughout the typical 5 to 7 days of use. Following this aging process, researchers measured the physical, structural, and mechanical changes in prophylactic dressings over time. This innovative method provides guidance for clinicians on dressing use and replacement intervals. For bioengineers, the method generates important empirical data for computer modeling of dressing performance, which can then reveal the consequences of changes in dressing structure and function on sustained tissue loads. It is the authors’ hope to generate discussion about the creation of industry-wide standards for testing dressings to improve patient care.
Results from large-scale randomized clinical trials support the application of prophylactic dressings to provide protection from body-weight force-induced deformations known to damage skin and underlying tissues, which often result in pressure injuries (pressure ulcers). This laboratory study using a new method for aging dressings in simulated use followed by tensile testing was conducted to further understand the protective effect of sacral prophylactic dressings (SPDs) in alleviating tissue deformations in the sacral region through the course of typical application. Specifically, four SPDs were exposed to a simulation of the clinical environment incorporating saline solution absorption, mechanical loading, and repetitive sliding-induced shear. After aging, the protective endurance of the SPDs was measured through tensile testing to determine their effectiveness against tissue-damaging forces over time. This study uses the concepts of axial stiffness, protective endurance, and elastic limit to describe more accurately the protective aspects of SPDs under dry and moist conditions and how they interact with the skin and underlying tissues over the life of the dressing. The authors propose two primary features in SPD effectiveness in preventing pressure injuries: high conformability (ie, low flexural stiffness) and protective endurance (the dressing’s capacity to maintain biomechanical performance when moist).
Background A continuing complication, pressure injuries are due to sustained mechanical loading and tissue deformations, which can then be exacerbated by additional intrinsic and extrinsic risk factors. Although support surfaces are designed to mitigate risk factors for pressure injuries, the presence of a turn and position device (TPD) between the patient and support surface may interfere with how support surfaces affect these risk factors. Objective Report the use of the NPIAP’s S3I standard test methods to characterize the performance of a support surface when used in conjunction with three different TPDs. Design Laboratory testing compared three TPDs for Immersion, Envelopment, and Horizontal Stiffness in each of five surface combinations. Main outcome measure Immersion test measures how far mannequin indenter immerses into surface. Envelopment test measures immersion and pressure distribution with hemispherical-indenter with mounted sensor rings. Horizontal Stiffness test measures the shear modulus of the support surface with epicondyle indenter. Main results For the specific TPDs tested here, the one with an adjustable integrated air bladder improved rather than compromised both the envelopment and the immersion of the support surface alone. Additionally, this TPD provided potential protection against sliding and the associated frictional shear forces. Conclusions This paper describes how TPDs should perform in order to help establish which features are needed in a new medical device of this type. Laboratory testing demonstrates it is possible to improve performance of a support surface by applying a TPD as an add-on, thus relieving tissue deformation exposure through more effective pressure redistribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.