Malaria (Plasmodium spp.) kills nearly one million people annually and this number will likely increase as drug and insecticide resistance reduces the effectiveness of current control strategies. The most important human malaria parasite, Plasmodium falciparum, undergoes a complex developmental cycle in the mosquito that takes approximately two weeks and begins with the invasion of the mosquito midgut. Here, we demonstrate that increased Akt signaling in the mosquito midgut disrupts parasite development and concurrently reduces the duration that mosquitoes are infective to humans. Specifically, we found that increased Akt signaling in the midgut of heterozygous Anopheles stephensi reduced the number of infected mosquitoes by 60–99%. Of those mosquitoes that were infected, we observed a 75–99% reduction in parasite load. In homozygous mosquitoes with increased Akt signaling parasite infection was completely blocked. The increase in midgut-specific Akt signaling also led to an 18–20% reduction in the average mosquito lifespan. Thus, activation of Akt signaling reduced the number of infected mosquitoes, the number of malaria parasites per infected mosquito, and the duration of mosquito infectivity.
Place cell activity of hippocampal pyramidal cells has been described as the cognitive substrate of spatial memory. Replay is observed during hippocampal sharp-wave-ripple-associated population burst events (PBEs) and is critical for consolidation and recall-guided behaviors. PBE activity has historically been analyzed as a phenomenon subordinate to the place code. Here, we use hidden Markov models to study PBEs observed in rats during exploration of both linear mazes and open fields. We demonstrate that estimated models are consistent with a spatial map of the environment, and can even decode animals’ positions during behavior. Moreover, we demonstrate the model can be used to identify hippocampal replay without recourse to the place code, using only PBE model congruence. These results suggest that downstream regions may rely on PBEs to provide a substrate for memory. Additionally, by forming models independent of animal behavior, we lay the groundwork for studies of non-spatial memory.
Rodent spatial navigation requires the dynamic evaluation of multiple sources of information, including visual cues, self-motion signals and reward signals. The nature of the evaluation, its dynamics and the relative weighting of the multiple information streams are largely unknown and have generated many hypotheses in the field of robotics. We use the framework of the traveling salesperson problem (TSP) to study how this evaluation may be achieved. The TSP is a classical artificial intelligence NP-hard problem that requires an agent to visit a fixed set of locations once, minimizing the total distance traveled. We show that after a few trials, rats converge on a short route between rewarded food cups. We propose that this route emerges from a series of local decisions that are derived from weighing information embedded in the context of the task. We study the relative weighting of spatial and reward information and establish that, in the conditions of this experiment, when the contingencies are not in conflict, rats choose the spatial or reward optimal solution. There was a trend toward a preference for space when the contingencies were in conflict. We also show that the spatial decision about which cup to go to next is biased by the orientation of the animal. Reward contingencies are also shown to significantly and dynamically modulate the decision-making process. This paradigm will allow for further neurophysiological studies aimed at understanding the synergistic role of brain areas involved in planning, reward processing and spatial navigation. These insights will in turn suggest new neural-like architectures for the control of mobile autonomous robots.
Malaria (Plasmodium spp.) kills nearly one million people annually and this number will likely increase as drug and insecticide resistance reduces the effectiveness of current control strategies. The most important human malaria parasite, Plasmodium falciparum, undergoes a complex developmental cycle in the mosquito that takes approximately two weeks and begins with the invasion of the mosquito midgut. Here, we demonstrate that increased Akt signaling in the mosquito midgut disrupts parasite development and concurrently reduces the duration that mosquitoes are infective to humans. Specifically, we found that increased Akt signaling in the midgut of heterozygous Anopheles stephensi reduced the number of infected mosquitoes by 60-99%. Of those mosquitoes that were infected, we observed a 75-99% reduction in parasite load. In homozygous mosquitoes with increased Akt signaling parasite infection was completely blocked. The increase in midgut-specific Akt signaling also led to an 18-20% reduction in the average mosquito lifespan. Thus, activation of Akt signaling reduced the number of infected mosquitoes, the number of malaria parasites per infected mosquito, and the duration of mosquito infectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.