Mutations in the KCNA1 gene, which encodes voltage-gated Kv1.1 potassium channel α-subunits, cause a variety of human diseases, complicating simple genotype–phenotype correlations in patients. KCNA1 mutations are primarily associated with a rare neurological movement disorder known as episodic ataxia type 1 (EA1). However, some patients have EA1 in combination with epilepsy, whereas others have epilepsy alone. KCNA1 mutations can also cause hypomagnesemia and paroxysmal dyskinesia in rare cases. Why KCNA1 variants are associated with such phenotypic heterogeneity in patients is not yet understood. In this review, literature databases (PubMed) and public genetic archives (dbSNP and ClinVar) were mined for known pathogenic or likely pathogenic mutations in KCNA1 to examine whether patterns exist between mutation type and disease manifestation. Analyses of the 47 deleterious KCNA1 mutations that were identified revealed that epilepsy or seizure-related variants tend to cluster in the S1/S2 transmembrane domains and in the pore region of Kv1.1, whereas EA1-associated variants occur along the whole length of the protein. In addition, insights from animal models of KCNA1 channelopathy were considered, as well as the possible influence of genetic modifiers on disease expressivity and severity. Elucidation of the complex relationship between KCNA1 variants and disease will enable better diagnostic risk assessment and more personalized therapeutic strategies for KCNA1 channelopathy.
Microtubule polymerization dynamics result from the biochemical interactions of αβ-tubulin with the polymer end, but a quantitative understanding has been challenging to establish. We used interference reflection microscopy to make improved measurements of microtubule growth rates and growth fluctuations in the presence and absence of GTP hydrolysis. In the absence of GTP hydrolysis, microtubules grew steadily with very low fluctuations. These data were best described by a computational model implementing slow assembly kinetics, such that the rate of microtubule elongation is primarily limited by the rate of αβ-tubulin associations. With GTPase present, microtubules displayed substantially larger growth fluctuations than expected based on the no GTPase measurements. Our modeling showed that these larger fluctuations occurred because exposure of GDP-tubulin on the microtubule end transiently 'poisoned' growth, yielding a wider range of growth rates compared to GTP only conditions. Our experiments and modeling point to slow association kinetics (strong longitudinal interactions), such that drugs and regulatory proteins that alter microtubule dynamics could do so by modulating either the association or dissociation rate of tubulin from the microtubule tip. By causing slower growth, exposure of GDP tubulin at the growing microtubule end may be an important early event determining catastrophe.
Overexpression of ABC transporters like P-glycoprotein (P-gp) has been correlated with resistances in cancer chemotherapy. Intensive efforts to identify P-gp inhibitors for use in combination therapy have not led to clinically approved inhibitors to date. Here, we describe computational approaches combined with structure-based design to improve the characteristics of a P-gp inhibitor previously identified by us. This hit compound represents a novel class of P-gp inhibitors that specifically targets and inhibits P-gp ATP hydrolysis while not being transported by the pump. We describe here a new program for virtual chemical synthesis and computational assessment, ChemGen, to produce hit compound variants with improved binding characteristics. The chemical syntheses of several variants, efficacy in reversing multidrug resistance in cell culture, and biochemical assessment of the inhibition mechanism are described. The usefulness of the computational predictions of binding characteristics of the inhibitor variants is discussed and compared to more traditional structure-based approaches.
P-glycoprotein (P-gp) is a critical membrane transporter in the blood brain barrier (BBB) and is implicated in Alzheimer’s disease (AD). However, previous studies on the ability of P-gp to directly transport the Alzheimer’s associated amyloid-β (Aβ) protein have produced contradictory results. Here we use molecular dynamics (MD) simulations, transport substrate accumulation studies in cell culture, and biochemical activity assays to show that P-gp actively transports Aβ. We observed transport of Aβ40 and Aβ42 monomers by P-gp in explicit MD simulations of a putative catalytic cycle. In in vitro assays with P-gp overexpressing cells, we observed enhanced accumulation of fluorescently labeled Aβ42 in the presence of Tariquidar, a potent P-gp inhibitor. We also showed that Aβ42 stimulated the ATP hydrolysis activity of isolated P-gp in nanodiscs. Our findings expand the substrate profile of P-gp, and suggest that P-gp may contribute to the onset and progression of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.