Many infectious diseases spread through populations via the networks formed by physical contacts among individuals. The patterns of these contacts tend to be highly heterogeneous. Traditional "compartmental" modeling in epidemiology, however, assumes that population groups are fully mixed, that is, every individual has an equal chance of spreading the disease to every other. Applications of compartmental models to Severe Acute Respiratory Syndrome (SARS) resulted in estimates of the fundamental quantity called the basic reproductive number R0--the number of new cases of SARS resulting from a single initial case--above one, implying that, without public health intervention, most outbreaks should spark large-scale epidemics. Here we compare these predictions to the early epidemiology of SARS. We apply the methods of contact network epidemiology to illustrate that for a single value of R0, any two outbreaks, even in the same setting, may have very different epidemiological outcomes. We offer quantitative insight into the heterogeneity of SARS outbreaks worldwide, and illustrate the utility of this approach for assessing public health strategies.
Heterogeneity in host contact patterns profoundly shapes population-level disease dynamics. Many epidemiological models make simplifying assumptions about the patterns of disease-causing interactions among hosts. In particular, homogeneous-mixing models assume that all hosts have identical rates of disease-causing contacts. In recent years, several network-based approaches have been developed to explicitly model heterogeneity in host contact patterns. Here, we use a network perspective to quantify the extent to which real populations depart from the homogeneous-mixing assumption, in terms of both the underlying network structure and the resulting epidemiological dynamics. We find that human contact patterns are indeed more heterogeneous than assumed by homogeneous-mixing models, but are not as variable as some have speculated. We then evaluate a variety of methodologies for incorporating contact heterogeneity, including network-based models and several modifications to the simple SIR compartmental model. We conclude that the homogeneous-mixing compartmental model is appropriate when host populations are nearly homogeneous, and can be modified effectively for a few classes of non-homogeneous networks. In general, however, network models are more intuitive and accurate for predicting disease spread through heterogeneous host populations.
BackgroundThe trajectory of an infectious disease outbreak is affected by the behavior of individuals, and the behavior is often related to individuals' risk perception. We assessed temporal changes and geographical differences in risk perceptions and precautionary behaviors in response to H1N1 influenza.Methods1,290 US adults completed an online survey on risk perceptions, interests in pharmaceutical interventions (preventive intervention and curative intervention), and engagement in precautionary activities (information seeking activities and taking quarantine measures) in response to H1N1 influenza between April 28 and May 27 2009. Associations of risk perceptions and precautionary behaviors with respondents' sex, age, and household size were analyzed. Linear and quadratic time trends were assessed by regression analyses. Geographic differences in risk perception and precautionary behaviors were evaluated. Predictors of willingness to take pharmaceutical intervention were analyzed.ResultsRespondents from larger households reported stronger interest in taking medications and engaged in more precautionary activities, as would be normatively predicted. Perceived risk increased over time, whereas interest in pharmaceutical preventive interventions and the engagement in some precautionary activities decreased over time. Respondents who live in states with higher H1N1 incidence per population perceived a higher likelihood of influenza infection, but did not express greater interests in pharmaceutical interventions, nor did they engage in a higher degree of precautionary activities. Perceived likelihood of influenza infection, willingness to take medications and engagement in information seeking activities were higher for women than men.ConclusionsPerceived risk of infection and precautionary behavior can be dynamic in time, and differ by demographic characteristics and geographical locations. These patterns will likely influence the effectiveness of disease control measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.