Floods are the most common and among the most severe natural disasters in many countries around the world. As global warming continues to exacerbate sea level rise and extreme weather, governmental authorities and environmental agencies are facing the pressing need of timely and accurate evaluations and predictions of flood risks. Current flood forecasts are generally based on historical measurements of environmental variables at monitoring stations. In recent years, in addition to traditional data sources, large amounts of information related to floods have been made available via social media. Members of the public are constantly and promptly posting information and updates on local environmental phenomena on social media platforms. Despite the growing interest of scholars towards the usage of online data during natural disasters, the majority of studies focus exclusively on social media as a stand-alone data source, while its joint use with other type of information is still unexplored. In this paper we propose to fill this gap by integrating traditional historical information on floods with data extracted by Twitter and Google Trends. Our methodology is based on vine copulas, that allow us to capture the dependence structure among the marginals, which are modelled via appropriate time series methods, in a very flexible way. We apply our methodology to data related to three different coastal locations on the South coast of the United Kingdom (UK). The results show that our approach, based on the integration of social media data, outperforms traditional methods in terms of evaluation and prediction of flood events.
Floods are the most common and among the most severe natural disasters in many countries around the world. As global warming continues to exacerbate sea level rise and extreme weather, governmental authorities and environmental agencies are facing the pressing need of timely and accurate evaluations and predictions of flood risks. Current flood forecasts are generally based on historical measurements of environmental variables at monitoring stations. In recent years, in addition to traditional data sources, large amounts of information related to floods have been made available via social media. Members of the public are constantly and promptly posting information and updates on local environmental phenomena on social media platforms. Despite the growing interest of scholars towards the usage of online data during natural disasters, the majority of studies focus exclusively on social media as a stand-alone data source, while its joint use with other type of information is still unexplored. In this paper we propose to fill this gap by integrating traditional historical information on floods with data extracted by Twitter and Google Trends. Our methodology is based on vine copulas, that allow us to capture the dependence structure among the marginals, which are modelled via appropriate time series methods, in a very flexible way. We apply our methodology to data related to three different coastal locations in the South cost of the UK. The results show that our approach, based on the integration of social media data, outperforms traditional methods, providing a more accurate evaluation and prediction of flood events.
The Covid-19 pandemic presents a serious threat to people's health, resulting in over 250 million confirmed cases and over 5 million deaths globally. In order to reduce the burden on national health care systems and to mitigate the effects of the outbreak, accurate modelling and forecasting methods for short-and long-term health demand are needed to inform government interventions aiming at curbing the pandemic. Current research on Covid-19 is typically based on a single source of information, specifically on structured historical pandemic data. Other studies are exclusively focused on unstructured online retrieved insights, such as data available from social media. However, the combined use of structured and unstructured information is still uncharted. This paper aims at filling this gap, by leveraging historical as well as social media information with a novel data integration methodology. The proposed approach is based on vine copulas, which allow us to improve predictions by exploiting the dependencies between different sources of information. We apply the methodology to combine structured datasets retrieved from official sources and to a big unstructured dataset of information collected from social media. The results show that the proposed approach, compared to traditional approaches, yields more accurate estimations and predictions of the evolution of the Covid-19 pandemic.
The international Maritime Organization (IMO) has set the target of reducing the emissions from the shipping sector to at least 50% of the 2008 levels. One potential method to cut emissions is to convert vessels to battery powered propulsion in a similar manner to that which has been adopted for motor vehicles. Although, battery powered propulsion will not be suitable for all vessels, the conversion of those that are will lead to an increase in the energy demand from the national grid. This study uses historic port call data is used to model the timings of arrivals and the number of vessels in the port of Plymouth to predict the increase in additional energy demand required for battery powered vessels through a period of 24 hours as a greater proportion of the fleet move to battery powered propulsion.
The Covid-19 pandemic presents a serious threat to people’s health, resulting in over 250 million confirmed cases and over 5 million deaths globally. To reduce the burden on national health care systems and to mitigate the effects of the outbreak, accurate modelling and forecasting methods for short- and long-term health demand are needed to inform government interventions aiming at curbing the pandemic. Current research on Covid-19 is typically based on a single source of information, specifically on structured historical pandemic data. Other studies are exclusively focused on unstructured online retrieved insights, such as data available from social media. However, the combined use of structured and unstructured information is still uncharted. This paper aims at filling this gap, by leveraging historical and social media information with a novel data integration methodology. The proposed approach is based on vine copulas, which allow us to exploit the dependencies between different sources of information. We apply the methodology to combine structured datasets retrieved from official sources and a big unstructured dataset of information collected from social media. The results show that the combined use of official and online generated information contributes to yield a more accurate assessment of the evolution of the Covid-19 pandemic, compared to the sole use of official data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.