Pulmonary metastasis remains the leading ca use of death for cancer patients. Opportunities to improve treatment outcomes for patients require new methods to study and view the biology of metastatic progression. Here, we describe an ex vivo pulmonary metastasis assay (PuMA) in which the metastatic progression of GFPexpressing cancer cells, from a single cell to the formation of multicellular colonies, in the mouse lung microenvironment was assessed in real time for up to 21 days. The biological validity of this assay was confirmed by its prediction of the in vivo behavior of a variety of high-and low-metastatic human and mouse cancer cell lines and the discrimination of tumor microenvironments in the lung that were most permissive to metastasis. Using this approach, we provide what we believe to be new insights into the importance of tumor cell interactions with the stromal components of the lung microenvironment. Finally, the translational utility of this assay was demonstrated through its use in the evaluation of therapeutics at discrete time points during metastatic progression. We believe that this assay system is uniquely capable of advancing our understanding of both metastasis biology and therapeutic strategies. IntroductionPulmonary metastasis remains a leading cause of death for cancer patients (1, 2). Opportunities to improve outcomes for these patients require a greater understanding of the biology of metastasis. In addition, there is a need to evaluate novel therapeutics, in a timely manner, that specifically target metastases and metastatic progression. Simple in vitro assay systems are not sufficient to model the complex interaction between cancer cells and the surrounding microenvironment that is necessary for metastasis (3). Accordingly, in vivo models of metastasis, largely in mice, have been necessary. For the most part, these models provide end points of metastatic outcome (i.e., yes or no metastasis) and time to late-stage metastatic events.A "black box" exists during which metastatic progression from single cells to gross metastatic lesions at a secondary site occurs. Recent attempts to shed light on this process have included imaging strategies that allow some of the steps of metastatic progression to be followed in vivo (4). However, these approaches often involve sophisticated and expensive imaging techniques that are time consuming and do not easily allow serial assessment of early metastatic progression at secondary sites, particularly in the lung and at the single-cell level. Challenges associated with studying metastasis have resulted in limited opportunities to include the assessment of novel treatment agents against metastatic end points (5). Therefore, an unmet need in the field of cancer research is a simple assay in which the process of metastatic progression at a secondary site can be reproduced and studied over time.
The ability of Vaccinum macrocarpon, the North American cranberry, to prevent bacterial adhesion has been used to advantage in the prevention of urinary tract infections and has recently been described for the prevention of adhesion of bacteria responsible for oral infections and stomach ulcers. This report documents the ability of cranberry juice to reduce nonspecific adhesion of bacteria to the borosilicate glass microscope slides used in an immunoarray biosensor format. Nonspecific binding of analytes in the array sensor leads to high background signals that cause increased detection limits and false positives. Reduction in background-to-signal ratios can be seen as the juice concentration is increased from 0 to 50% of the sample. This impact cannot be duplicated with grape, orange, apple, or white cranberry juice. Sugar content and pH have been eliminated as the agents in the juice responsible for the anti-adhesive activity.
In Figure 3E, the units provided for carbohydrate oxidation and fat oxidation were incorrect. The units for both should be g/d/kg 0.75 .The authors regret the error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.