Chronic treatment with ⌬ 9 -tetrahydrocannabinol (THC) produces tolerance to cannabinoid-mediated behaviors and region-specific adaptation of brain cannabinoid receptors. However, the relationship between receptor adaptation and tolerance is not well understood, and the dose-response relationship of THC-induced cannabinoid receptor adaptation is unknown. This study assessed cannabinoid receptor function in the brain and cannabinoid-mediated behaviors after chronic treatment with different dosing regimens of THC. Mice were treated twice per day for 6.5 days with the following: vehicle, 10 mg/kg THC, or escalating doses of 10 to 20 to 30 or 10 to 30 to 60 mg/kg THC. Tolerance to cannabinoid-mediated locomotor inhibition, ring immobility, antinociception, and hypothermia was produced by both ramping THC-dose paradigms. Administration of 10 mg/kg THC produced less tolerance development, the magnitude of which depended upon the particular behavior. Decreases in cannabinoid-mediated G-protein activation, which varied with treatment dose and region, were 35 S]GTP␥S binding was reduced in the hippocampus, cingulate cortex, periaqueductal gray, and cerebellum after all treatments. Decreased agonist-stimulated [35 S]GTP␥S binding in the caudate-putamen, nucleus accumbens, and preoptic area occurred only after administration of 10 to 30 to 60 mg/kg THC, and no change was found in the globus pallidus or entopeduncular nucleus after any treatment. Changes in the CB 1 receptor B max values also varied by region, with hippocampus and cerebellum showing reductions after all treatments and striatum/globus pallidus showing effects only at higher dosing regimens. These results reveal that tolerance and CB 1 receptor adaptation exhibit similar dose-dependent development, and they are consistent with previous studies demonstrating less cannabinoid receptor adaptation in striatal circuits.Cannabinoids are used for their psychoactive effects and for therapeutic treatment of nausea/emesis and cachexia. Previous studies also suggest that cannabinoids may have clinical potential for the treatment of pain and degenerative disorders (Piomelli et al., 2000;van der Stelt and Di Marzo, 2003). Acute administration of cannabinoids produces antinociception, locomotor inhibition, hypothermia, and impairment of short-term memory (Howlett et al., 2002). ⌬ 9 -Tetrahydrocannabinol (THC) and other cannabinoids produce their psychoactive and behavioral effects via activation of CB 1 receptors in the central nervous system (CNS) (Ledent et al., 1999). Recent reports indicate that CB 2 and novel cannabinoid receptors might exist in the CNS (Mackie and Stella, 2006), but their role is unclear. CB 1 receptors are widely distributed in the brain where they exhibit a predominantly presynaptic location and modulate neurotransmitter release (Schlicker and Kathmann, 2001 [2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo [1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate; GP, globus pallidus; MPE, maximal possible effect; POA, preoptic a...
Background: Mechanisms by which muscle regulates bone are poorly understood. Results: Electrically stimulated muscle contraction reversed elevations in bone resorption and increased Wnt signaling in bone-derived cells after spinal cord transection. Conclusion: Muscle contraction reduced resorption of unloaded bone independently of the CNS, through mechanical effects and, potentially, nonmechanical signals (e.g. myokines). Significance: The study provides new insights regarding muscle-bone interactions.
It is now firmly established that TSH may influence the physiology and patho-physiology of bone by activating osteoblasts and inhibiting osteoclast activity resulting in relative osteoprotection. Whether this influence is directly exerted by pituitary-derived TSH in vivo is less certain, because we have previously reported that the suppression of pituitary TSH does not remove such protection. Here, we have characterized the functional relevance of a novel form of the TSH-β subunit, designated TSH-βv, known to be produced by murine bone marrow cells. We found that fresh bone marrow-derived macrophages (MØs) preferentially produced TSH-βv and, when cocultured with CHO cells engineered to overexpress the full-length TSH receptor, were able to generate the production of intracellular cAMP; a phenomenon not seen in control CHO cells, such results confirmed the bioactivity of the TSH variant. Furthermore, cocultures of MØs and osteoblasts were shown to enhance osteoblastogenesis, and this phenomenon was markedly reduced by antibody to TSH-β, suggesting direct interaction between MØs and osteoblasts as observed under the electron microscope. These data suggest a new paradigm of local modulation of bone biology by a MØ-derived TSH-like molecule and raise the question of the relative contribution of local vs pituitary-derived TSH in osteoprotection.
Myostatin (MST) is a potent regulator of muscle growth and size. Spinal cord injury (SCI) results in marked atrophy of muscle below the level of injury. Currently, there is no effective pharmaceutical treatment available to prevent sublesional muscle atrophy post-SCI. To determine whether inhibition of MST with a soluble activin IIB receptor (RAP-031) prevents sublesional SCI-induced muscle atrophy, mice were randomly assigned to the following groups: Sham-SCI; SCI+Vehicle group (SCI-VEH); and SCI+RAP-031 (SCI-RAP-031). SCI was induced by complete transection at thoracic level 10. Animals were euthanized at 56 days post-surgery. RAP-031 reduced, but did not prevent, body weight loss post-SCI. RAP-031 increased total lean tissue mass compared to SCI-VEH (14.8%). RAP-031 increased forelimb muscle mass post-SCI by 38% and 19% for biceps and triceps, respectively (p < 0.001). There were no differences in hindlimb muscle weights between the RAP-031 and SCI-VEH groups. In the gastrocnemius, messenger RNA (mRNA) expression was elevated for interleukin (IL)-6 (8-fold), IL-1β (3-fold), and tumor necrosis factor alpha (8-fold) in the SCI-VEH, compared to the Sham group. Muscle RING finger protein 1 mRNA was 2-fold greater in the RAP-031 group, compared to Sham-SCI. RAP-031 did not influence cytokine expression. Bone mineral density of the distal femur and proximal tibia were decreased post-SCI (-26% and -28%, respectively) and were not altered by RAP-031. In conclusion, MST inhibition increased supralesional muscle mass, but did not prevent sublesional muscle or bone loss, or the inflammation in paralyzed muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.