Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. Presumably, in response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface.
Hydrogen sulfide (H2S) is thought to protect bacteria from oxidative stress, but a comprehensive understanding of its function in bacteria is largely unexplored. In this study, we show that the human pathogen Staphylococcus aureus (S. aureus) harbors significant effector molecules of H2S signaling, reactive sulfur species (RSS), as low molecular weight persulfides of bacillithiol, coenzyme A, and cysteine, and significant inorganic polysulfide species. We find that proteome S- sulfhydration, a post-translational modification (PTM) in H2S signaling, is widespread in S. aureus. RSS levels modulate the expression of secreted virulence factors and the cytotoxicity of the secretome, consistent with an S-sulfhydration-dependent inhibition of DNA binding by MgrA, a global virulence regulator. Two previously uncharacterized thioredoxin-like proteins, denoted TrxP and TrxQ, are S-sulfhydrated in sulfide-stressed cells and are capable of reducing protein hydrodisulfides, suggesting that this PTM is potentially regulatory in S. aureus. In conclusion, our results reveal that S. aureus harbors a pool of proteome- and metabolite-derived RSS capable of impacting protein activities and gene regulation and that H2S signaling can be sensed by global regulators to affect the expression of virulence factors.
Multidrug resistant (MDR) Acinetobacter baumannii poses a growing threat to global health. Research on Acinetobacter pathogenesis has primarily focused on pneumonia and bloodstream infections, even though one in five A. baumannii strains are isolated from urinary sites. In this study, we highlight the role of A. baumannii as a uropathogen. We develop the first A. baumannii catheter-associated urinary tract infection (CAUTI) murine model using UPAB1, a recent MDR urinary isolate. UPAB1 carries the plasmid pAB5, a member of the family of large conjugative plasmids that represses the type VI secretion system (T6SS) in multiple Acinetobacter strains. pAB5 confers niche specificity, as its carriage improves UPAB1 survival in a CAUTI model and decreases virulence in a pneumonia model. Comparative proteomic and transcriptomic analyses show that pAB5 regulates the expression of multiple chromosomally-encoded virulence factors besides T6SS. Our results demonstrate that plasmids can impact bacterial infections by controlling the expression of chromosomal genes.
Acinetobacter baumannii, A. nosocomialis, and A. pittii have recently emerged as opportunistic human pathogens capable of causing severe human disease; however, the molecular mechanisms employed by Acinetobacter to cause disease remain poorly understood. Many pathogenic members of the genus Acinetobacter contain genes predicted to encode proteins required for the biogenesis of a type II secretion system (T2SS), which have been shown to mediate virulence in many Gram-negative organisms. Here we demonstrate that Acinetobacter nosocomialis strain M2 produces a functional T2SS, which is required for full virulence in both the Galleria mellonella and murine pulmonary infection models. Importantly, this is the first bona fide secretion system shown to be required for virulence in Acinetobacter. Using bioinformatics, proteomics, and mutational analyses, we show that Acinetobacter employs its T2SS to export multiple substrates, including the lipases LipA and LipH as well as the protease CpaA. Furthermore, the Acinetobacter T2SS, which is found scattered amongst five distinct loci, does not contain a dedicated pseudopilin peptidase, but instead relies on the type IV prepilin peptidase, reinforcing the common ancestry of these two systems. Lastly, two of the three secreted proteins characterized in this study require specific chaperones for secretion. These chaperones contain an N-terminal transmembrane domain, are encoded adjacently to their cognate effector, and their disruption abolishes type II secretion of their cognate effector. Bioinformatic analysis identified putative chaperones located adjacent to multiple previously known type II effectors from several Gram-negative bacteria, which suggests that T2SS chaperones constitute a separate class of membrane-associated chaperones mediating type II secretion.
Hydrogen sulfide (H2S) is a toxic molecule and a recently described gasotransmitter in vertebrates whose function in bacteria is not well understood. In this work, we describe the transcriptomic response of the major human pathogen Staphylococcus aureus to quantified changes in levels of cellular organic reactive sulfur species, which are effector molecules involved in H2S signaling. We show that nitroxyl (HNO), a recently described signaling intermediate proposed to originate from the interplay of H2S and nitric oxide, also induces changes in cellular sulfur speciation and transition metal homeostasis, thus linking sulfide homeostasis to an adaptive response to antimicrobial reactive nitrogen species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.