A woman in her 70s presented to the emergency department with fever, fluctuating cognition and headache. A detailed examination revealed neurological weakness to the lower limbs with atonia and areflexia, leading to a diagnosis of bacterial meningitis, alongside a concurrent COVID-19 infection. The patient required critical care escalation for respiratory support. After stepdown to a rehabilitation ward, she had difficulties communicating due to new aphonia, hearing loss and left third nerve palsy. The team used written communication with the patient, and with this the patient was able to signal neurological deterioration. Another neurological examination noted a different pattern of weakness to the lower limbs, along with new urinary retention, and spinal arachnoiditis was identified. After more than 10 weeks in the hospital, the patient was discharged. Throughout this case, there were multiple handovers between teams and specialties, all of which were underpinned by good communication and examination to achieve the best care.
This research, undertaken by Student Fellows (a scheme managed by both the University of Winchester and Winchester Student Union), aims to evaluate students’ perceptions of student voice at the University and to raise awareness of the opportunities available. Through the mixed-method approach of concept mapping, focus groups and surveys, the hope is to target the gap in the literature of this field. Having a personal connection with this project gave us a powerful insight into the students’ mindset and therefore allowed us to address the issue directly, particularly with regard to the decrease in engagement with student activities from school to university.
Transformation via Agrobacterium tumefaciens (Agrobacterium) is the predominant method used to introduce exogenous DNA into plants. Transfer DNA (T-DNA) originating from Agrobacterium can be integrated as a single copy or in concatenated forms in plant genomes, but the mechanisms affecting final T-DNA structure remain unknown. In this study, we demonstrate that the inclusion of retrotransposon (RT)-derived sequences in T-DNA can increase transgene copy number by more than 50-fold in Arabidopsis thaliana (Arabidopsis). RT-mediated amplification of T-DNA results in large concatemers in the Arabidopsis genome, which are primarily induced by the long terminal repeats (LTRs) of RTs. T-DNA amplification is dependent on the activity of DNA repair proteins associated with theta-mediated end joining (TMEJ). Finally, we show that T-DNA amplification can increase the frequency of targeted mutagenesis and gene targeting. Overall, this work uncovers molecular determinants that modulate T-DNA copy number in Arabidopsis and demonstrates the utility of inducing T-DNA amplification for plant gene editing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.