Gait training via a wearable device in children with cerebral palsy (CP) offers the potential to increase therapy dosage and intensity compared to current approaches. Here, we report the design and characterization of a pediatric knee exoskeleton (P.REX) with a microcontroller based multi-layered closed loop control system to provide individualized control capability. Exoskeleton performance was evaluated through benchtop and human subject testing. Step response tests show the averaged 90% rise was 26 ± 0.2 ms for 5 Nm, 22 ± 0.2 ms for 10 Nm, 32 ± 0.4 ms for 15 Nm. Torque bandwidth of P.REX was 12 Hz and output impedance was less than 1.8 Nm with control on (Zero mode). Three different control strategies can be deployed to apply assistance to knee extension: state-based assistance, impedance-based trajectory tracking, and real-time adaptive control. One participant with typical development (TD) and one participant with crouch gait from CP were recruited to evaluate P.REX in overground walking tests. Data from the participant with TD were used to validate control system performance. Kinematic and kinetic data were collected by motion capture and compared to exoskeleton on-board sensors to evaluate control system performance with results demonstrating that the control system functioned as intended. The data from the participant with CP are part of a larger ongoing study. Results for this participant compare walking with P.REX in two control modes: a state-based approach that provided constant knee extension assistance during early stance, mid-stance and late swing (Est+Mst+Lsw mode) and an Adaptive mode providing knee extension assistance proportional to estimated knee moment during stance. Both were well tolerated and significantly improved knee extension compared to walking without extension assistance (Zero mode). There was less reduction in gait speed during use of the adaptive controller, suggesting that it may be more intuitive than state-based constant assistance for this individual. Future work will investigate the effects of exoskeleton assistance during overground gait training in children with neurological disorders and will aim to identify the optimal individualized control strategy for exoskeleton prescription.
The polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) affect vascular relaxation and involve factors (e.g., nitric oxide) that contribute to exercise-induced increases in skeletal-muscle blood flow (Q). The authors investigated whether DHA and EPA supplementation augments skeletal-muscle Q and vascular conductance (VC) and attenuates renal and splanchnic Q and VC in exercising rats. Rats were fed a diet of 5% lipids by weight, of which 20% was DHA and 30% EPA (PUFA group, n = 9), or 5% safflower oil (SO group, n = 8) for 6 wk. Heart rate (HR), blood pressure (MAP), and hind-limb, renal, and splanchnic Q were measured at rest and during moderate treadmill running. MAP, HR, and renal and splanchnic Q and VC were similar between the 2 groups at rest and during exercise. In the PUFA group, Q (158 ± 27 vs. 128 ± 28 ml × min⁻¹ × 100 g⁻¹) and VC (1.16 ± 0.21 vs. 0.92 ± 0.23 ml × min⁻¹ × 100 g⁻¹ × mm Hg⁻¹) were greater in the exercising hind-limb muscle. Q and VC were also higher in 8 of 28 and 11 of 28 muscles and muscle parts, respectively. These increases were positively correlated to the percent sum of Types I and IIa fibers. Results suggest that DHA+EPA (a) enhances Q and VC in active skeletal muscle (especially Type I and IIa fibers) and that the increase in Q is due to an increase in cardiac output secondary to increases in VC and (b) has no apparent influence on vasoconstriction in renal and splanchnic tissue.
Introduction Wearable robotic exoskeletons offer the potential to move gait training from the clinic to the community thereby providing greater therapy dosage in more naturalistic settings. To capitalize on this potential, intuitive and robust interfaces are necessary between robotic devices and end users. Such interfaces hold great promise for research if they are also designed to record data from the robot during its use. Methods We present the design and validation of an open source graphical user interface (GUI) for wireless operation of and real-time data logging from a pediatric robotic exoskeleton. The GUI was designed for trained users such as an engineer or clinician. A simplified mobile application is also provided to enable exoskeleton operation by an end-user or their caretaker. GUI function was validated during simulated walking with the exoskeleton using a motion capture system. Results Our results demonstrate the ability of the GUI to wirelessly operate and save data from exoskeleton sensors with high fidelity comparable to motion capture. Conclusion The GUI code, available in a public repository with a detailed description and step-by-step tutorial, is configurable to interact with any robotic device operated by a microcontroller and therefore represents a potentially powerful tool for deployment and evaluation of community based robotics.
Dietary supplementation (SUPP) with FO containing docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) has been demonstrated to produce advantageous effects on vascular function. Specifically, FO SUPP has resulted in enhanced brachial artery dilation during rhythmic handgrip exercise (EX). The effects of FO on BF during dynamic full body EX, however, remain unknown.PURPOSE:To test our hypothesis that 6 weeks of dietary SUPP with DHA and EPA enhances the regional BF response to submaximal treadmill EX in the rat hindlimb.METHODS:Following 6 weeks of dietary SUPP with safflower oil (SO) (control; n = 9) or FO (n = 8), heart rate (HR), mean arterial pressure (MAP), and BF to the hindlimb were measured at rest and during submaximal treadmill EX (20 m/min, 10%) via radiolabeled microspheres in male Sprague‐Dawley rats.RESULTS:HR and MAP were not different between SO and FO at rest or EX (P<0.05). BF was not different between SO and FO at rest. During EX, FO exhibited greater BF in 8 of the 28 muscle parts measured as well greater BF (158±9) to the total hindlimb musculature than SO (128±10ml/min/100g) (P<0.05).CONCLUSION:These results demonstrate that 6 weeks of dietary SUPP with FO results in enhanced BF to the hindlimb during submaximal EX. Thus, SUPP with FO may have therapeutic effects on oxygen delivery and vascular function in patients with impaired vascular function and EX tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.