Wireless smart sensor networks have become an attractive alternative to traditional wired sensor systems to reduce implementation costs of structural health monitoring systems. The onboard sensing, computation, and communication capabilities of smart wireless sensors have been successfully leveraged in numerous monitoring applications. However, the current data acquisition schemes, which completely acquire data remotely prior to processing, limit the applications of wireless smart sensors (e.g., for real-time visualization of the structural response). Although realtime data acquisition strategies have been explored, challenges of implementing high-throughput real-time data acquisition over larger network sizes still remain because of operating system limitations, tight timing requirements, sharing of transmission bandwidth, and unreliable wireless radio communication. This paper presents the implementation of real-time wireless data acquisition on the Imote2 platform. The challenges presented by hardware and software limitations are addressed in the application design. The framework is then expanded for high-throughput applications that necessitate larger networks sizes with higher sampling rates. Two approaches are implemented and evaluated on the basis of network size, associated sampling rate, and data delivery reliability. Ultimately, the communication and processing protocol allows for near-real-time sensing of 108 channels across 27 nodes with minimal data loss.
Summary Structural control systems offer an attractive approach to protect civil infrastructures from natural hazards such as earthquakes. Wireless structural control systems that utilize wireless sensors for sensing, communication, and control have drawn increased attention because of the flexible installation, rapid deployment, and reduced cost. Although there are studies of wireless control systems for civil structures, a benchmark problem that captures not only the dynamics of the plant but also the realistic features of a wireless network has not been available. In this paper, a benchmark model for an active mass driver system with a wireless sensor network is presented. This wireless control benchmark model combines a seismically excited building benchmark model developed with Simulink (Matlab, MathWorks, Inc., Natick, MA, USA) and a wireless sensor network implemented in simulation using a state‐of‐the‐art wireless simulator TOSSIM (UC Berkeley, Berkeley, CA, USA). Wireless signal and noise traces collected from a real‐world multistory building are used as inputs to TOSSIM to realistically simulate the wireless sensor network. Wireless control design issues such as network‐induced delay, data loss, available sensor measurements, measurement noises, and control constraints can be studied with this benchmark model. A sample controller is provided to illustrate the wireless control design. Evaluation criteria have been provided to examine resources and control performances. Copyright © 2015 John Wiley & Sons, Ltd.
The Newmark Structural Engineering Laboratory (NSEL) of the Department of Civil and Environmental Engineering at the University of Illinois at Urbana-Champaign has a long history of excellence in research and education that has contributed greatly to the state-of-the-art in civil engineering. Completed in 1967 and extended in 1971, the structural testing area of the laboratory has a versatile strong-floor/wall and a three-story clear height that can be used to carry out a wide range of tests of building materials, models, and structural systems. The laboratory is named for Dr. Nathan M. Newmark, an internationally known educator and engineer, who was the Head of the Department of Civil Engineering at the University of Illinois and the Chair of the Digital Computing Laboratory . He developed simple, yet powerful and widely used, methods for analyzing complex structures and assemblages subjected to a variety of static, dynamic, blast, and earthquake loadings. Dr. Newmark received numerous honors and awards for his achievements, including the prestigious National Medal of Science awarded in 1968 by President Lyndon B. Johnson. He was also one of the founding members of the National Academy of Engineering. Contact:Prof ABSTRACTA critical aspect of using wireless sensors for structural health monitoring is communication performance. Unlike wired systems, data transfer is less reliable between wireless sensor nodes due to data loss. While reliable communication protocols are typically used to reduce data loss, this increase in communication can drain already limited power resources. This report provides an experimental investigation of the wireless communication characteristics of the Imote2 smart sensor platform; the presentation is tailored towards the end user, e.g., application engineers and researchers. Following a qualitative discussion of wireless communication and packet delivery, a quantitative characterization of wireless communication capabilities of the Imote2 platform is provided, including an assessment of onboard and external antenna performance. Herein, the external antenna was found to significantly outperform the onboard antenna in both transmission and reception reliability. However, the built environment, including building materials and other wireless networks, can significantly reduce reception rate and thus increase packet loss. Finally, implications of these results for a full-scale implementation are presented. CONTENTS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.