Wine grape production is challenged by forecasted increases in air temperature and droughts due to climate change and photoselective overhead shade films are promising tools in hot viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berries to solar radiation overexposure, optimize shade film use for preserving berry composition. An experiment was conducted for two years with four shade films (D1, D3, D4, D5) with differing solar radiation spectra transmittance and compared to an uncovered control (C0). Integrals for leaf gas exchange and mid-day stem water potential were unaffected by the shade films in both years. At harvest, berry primary metabolites were not affected by treatments applied in either year. Despite precipitation exclusion during the dormant seasons in shaded treatments, and cluster zone temperatures reaching 58°C in C0, yield was not affected. Berry skin anthocyanin and flavonol composition and content were measured by C18 reversed-phase HPLC. In 2020, total skin anthocyanins (mg·berry-1) in the shaded treatments were 27% greater than C0 during berry ripening and at harvest. Conversely, flavonol content in 2020 decreased in partially shaded grapevines compared to C0. Berry flavonoid content in 2021 increased until harvest while flavonol degradation was apparent from veraison to harvest in 2020 across partially shaded and control grapevines. Untreated control showed lower di- to tri-hydroxylated flavonol ratios closer to harvest. Our results provided evidence that overhead partial shading of vineyards mitigate anthocyanin degradation by reducing cluster zone temperatures and is a useful tool in combatting climate change in hot climate regions.
Grape growing regions are facing constant warming of the growing season temperature as well as limitations on ground water pumping used for irrigating to overcome water deficits. Trellis systems are utilized to optimize grapevine production, physiology, and berry chemistry. This study aimed to compare 6 trellis systems with 3 levels of applied water amounts based on different replacements of crop evapotranspiration (ETc) in two consecutive seasons. The treatments included a vertical shoot position (VSP), two modified VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a Guyot pruned VSP (GY) combined with 25%, 50%, and 100% ETc water replacement. The SH had greater yields, whereas HQ was slower to reach full production potential. At harvest in both years, the accumulation of anthocyanin derivatives was enhanced in SH, whereas VSPs decreased them. As crown porosity increased (mostly VSPs), berry flavonol concentration and likewise molar % of quercetin in berries increased. Conversely, as leaf area increased, total flavonol concentration and molar % of quercetin decreased, indicating a preferential arrangement of leaf area along the canopy for overexposure of grape berry with VSP types. The irrigation treatments revealed linear trends for components of yield, where greater applied water resulted in larger berry size and likewise greater yield. 25% ETc was able to increase berry anthocyanin and flavonol concentrations. Overall, this study evidenced the efficiency of trellis systems for optimizing production and berry composition in Californian climate, also, the feasibility of using flavonols as the indicator of canopy architecture.
IntroductionOverhead photoselective shade films installed in vineyards improve berry composition in hot grape-growing regions. The aim of the study was to evaluate the flavonoid and aroma profiles and composition of wines from Cabernet Sauvignon grapes (Vitis vinifera L.) treated with partial solar radiation exclusion.MethodsExperimental design consisted in a randomized experiment with four shade films (D1, D3, D4, D5) with differing solar radiation spectra transmittance and compared to an uncovered control (C0) performed over two seasons (2021 and 2022) in Oakville (CA, USA). Berries were collected by hand at harvest and individual vinifications for each treatment and season were conducted in triplicates. Then, wine chemical composition, flavonoid and aromatic profiles were analyzed.ResultsThe wines from D4 treatment had greater color intensity and total phenolic index due to co-pigmentation with anthocyanins. Shade film wines D5 and D1 from the 2020 vintage demonstrated increased total anthocyanins in the hotter of the two experimental years. In 2021, reduced cluster temperatures optimized total anthocyanins in D4 wines. Reduced cluster temperatures modulated anthocyanin acylation, methylation and hydroxylation in shade film wines. Volatile aroma composition was analyzed using gas chromatography mass spectroscopy (GCMS) and D4 wines exhibited a more fruity and pleasant aroma profile than C0 wines.DiscussionResults provided evidence that partial solar radiation exclusion in the vineyard using overhead shade films directly improved flavonoid and aroma profiles of resultant wines under hot vintage conditions, providing a tool for combatting air temperatures and warmer growing conditions associated with climate change.
This study aimed to evaluate the effects of annual or perennial cover crops and tillage regimes on whole grapevine physiology and berry composition. We studied the interactive effects of tillage and cover crops on grapevine water status, leaf gas exchange, components of yield, berry composition and resulting water footprint in two contrasting production regions (Fresno County-hot climate and Napa County-warm climate) of California. The treatments included a perennial grass (PG), resident vegetation (RV), and an annual grass (AG) grown under conventional tillage (CT) and no-till (NT) settings. Neither cover crop nor tillage affected grapevine leaf gas exchange. However, at the Napa County vineyard, NT detrimentally affected grapevine water status compared to CT. Grapevine mineral nutrition, when assessed during anthesis revealed no effects of cover cropping in either year or at either location. Cover crop type did not affect yield components or berry composition, however CT increased titratable acidity (TA) at both sites. The water footprint of vineyards at either location was not affected by cover crops or tillage. Our results provided evidence that both in hot and warm climate vineyards cover cropping had negligible beneficial effects on grapevine physiology, mineral nutrition or productivity with no detrimental effects on vineyard water footprint; tillage was beneficial in younger vineyards to improve plant water status in semi-arid regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.