A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs. Efforts to improve the cellular delivery, efficacy, and tumor responsiveness of these chelators are also presented including a transmetallation strategy for dual targeting of Cu and Fe. To elucidate the effectiveness and specificity of Cu and Fe chelators for treating cancer, analytical tools are described for measuring Cu and Fe levels and for tracking the metals in cells, tissue, and the body.
Over time platinum-based anticancer drugs have dominated the market, but their side effects significantly impact the quality of life of patients. Alternative treatments are being developed all over the world. The titanocene and auranofin families of compounds, discovered through an empirical search for other metal-based therapeutics, hold tremendous promise to improve the outcomes of cancer treatment. Herein we present a historical perspective of these compounds and review current efforts focused on the evolution of their ligands to improve their physiological solution stability, cancer selectivity, and antiproliferative performance, guided by a clear understanding of the coordination chemistry and aqueous speciation of the metal ions, of the cytotoxic mechanism of action of the compounds, and the external factors that limit their therapeutic potential. Newer members of these families of compounds and their combination in novel bimetallic complexes are the result of years of scientific research. We believe that this review can have a positive impact in the development and understanding of the metal-based drugs of gold, titanium, and beyond.
Due to the rapid mutation of pathogenic microorganisms, drug-resistant superbugs have evolved. Antimicrobial-resistant germs may share their resistance genes with other germs, making them untreatable. The search for more combative antibiotic compounds has led researchers to explore metal-based strategies centered on perturbing the bioavailability of essential metals in microbes and examining the therapeutic potential of metal complexes. Given the limited knowledge on the application of titanium(IV), in this work, eight Ti(IV) complexes and some of their corresponding ligands were screened by the Community for Open Antimicrobial Drug Discovery for antimicrobial activity. The compounds were selected for evaluation because of their low cytotoxic/antiproliferative behavior against a human non-cancer cell line. At pH 7.4, these compounds vary in terms of their solution stability and ligand exchange lability; therefore, an assessment of their solution behavior provides some insight regarding the importance of the identity of the metal compound to the antimicrobial therapeutic potential. Only one compound, Ti(deferasirox)2, exhibited promising inhibitory activity against the Gram-positive bacteria methicillin-resistant Staphylococcus aureus and minimal toxicity against human cells. The ability of this compound to undergo transmetalation with labile Fe(III) sources and, as a consequence, inhibit Fe bioavailability and ribonucleotide reductase is evaluated as a possible mechanism for its antibiotic effect.
Coordination chemistry is a major component of the undergraduate inorganic chemistry curriculum, and yet, the presentation of the material can be cumbersome due to the limitations of the course typically being taught in one semester. Also, because of the large scope of this branch of chemistry encompassing all of the elements, the course design has not been standardized. These factors result in some important coordination chemistry themes being given insufficient development. Herein, we propose a novel activity to formally introduce metal complex aqueous speciation in a holistic active-learning manner that includes a lecture component and a hands-on experience. This topic has real-world relevance and contextualizes many important coordination concepts. It would extend student comprehension about the intricate factors that affect metal complexation in an aqueous solution environment by focusing on the influence of pH. The activity explores the pH dependent speciation of the well-characterized interaction between Fe(III) and 2,3-dihydroxynapthalene-6-sulfonate and reveals the colorful changes in species throughout the pH range 0–13. Students learn how to generate speciation plots and to understand the ultraviolet–visible (UV–Vis) electronic absorption spectroscopy of transition metal compounds to be able to analyze the source of color that they observe. Assessment of the activity was conducted with 24 students who completed a Likert scale survey and responded to open-ended questions. The activity was then applied in actual course settings in which student comprehension was quantitatively evaluated. The activity can be easily adapted to students of different stages of academic development from elementary to college students.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.