It has been argued that the dopaminergic system is involved in the attribution of motivational value to reward predictive cues as well as prediction error. To evaluate, dopamine neurons were recorded from male rats performing a Pavlovian approach task containing cues that have both "predictive" and "incentive" properties. All animals learned the predictive nature of the cue (illuminated lever entry into cage), but some also found the cue to be attractive and were motivated toward it ("sign-trackers," STs). "Goal-trackers" (GTs) predominantly approached the location of reward receptacle. Rats were implanted with tetrodes for neural electrophysiological recordings in the ventral tegmental area. Cells were characterized by spike waveform shape and firing rate. Firing rates and magnitudes of responses in relation to Pavlovian behaviors, cue presentation, and reward delivery were assessed. We identified 103 dopamine and 141 nondopamine neurons. GTs and STs both showed responses to the initial lever presentation (CS1) and lever retraction (CS2). However, higher firing rates were sustained during the lever interaction period only in STs. Further, dopamine cells of STs showed a significantly higher proportion of cells responding to both CS1 and CS2. These are the first results to show that neurons from the VTA encode both predictive and incentive cues, support an important role for dopamine neurons in the attribution of incentive salience to reward-paired cues, and underscore the consequences of potential differences in motivational behavior between individuals.
Rationale Compared to obesity-resistant rats, obesity-prone rats consume more food, work harder to obtain food, show greater motivational responses to food-cues, and show greater striatal plasticity in response to eating sugary/fatty foods. Therefore, it is possible that obesity-prone rats may also be more sensitive to the motivational properties of cocaine and cocaine-paired cues, and to plasticity induced by cocaine. Objective To examine baseline differences in motivation for cocaine and effects of intermittent access (IntA) cocaine self-administration on cocaine motivation, neurobehavioral responsivity to cocaine-paired cues, and locomotor sensitization in male obesity-prone vs obesity-resistant rats. Methods Intravenous cocaine self-administration was used to examine drug-taking and drug-seeking in males. Motivation for cocaine was measured using a within session threshold procedure. Cue-induced c-Fos expression in mesocorticolimbic regions was measured. Results Drug-taking and drug-seeking, cue-induced c-Fos, locomotor sensitization, and preferred level of cocaine consumption (Q0) were similar between obesity-prone and obesity-resistant groups. Maximal responding during demand testing (Rmax) was lower in obesity-prone rats. IntA experience enhanced motivation for cocaine (Pmax) in obesity-prone rats. Conclusions The results do not support robust inherent differences in motivation for cocaine, cue-induced cocaine seeking, or neurobehavioral plasticity induced by IntA in obesity-prone vs obesity-resistant rats. This contrasts with previously established differences seen for food and food cues in these populations and shows that inherent enhancements in motivation for food and food-paired cues do not necessarily transfer to drugs and drug-paired cues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.