Somatic genomic testing is rapidly becoming an integral part of care for patients with metastatic cancer. Extrapolation of these results beyond personalized cancer therapy is a skill being demanded of practicing oncologists without prior specialty in genetics. Up to 12% of tumor genomic profiling reports will reveal a germline pathogenic variant. Recognition of these germline variants is essential not only for optimal care of the patient with cancer but also to initiate cascade genetic testing in at-risk family members who also may carry the familial mutation. This article provides a concise and methodical, evidence-based strategy to guide oncology providers about how to identify genes associated with an inherited predisposition for cancer, determine the pathogenicity of variants reported within those genes, and understand the likelihood that these variants are of germline origin in a particular patient with cancer. Case examples are provided to illustrate clinical scenarios and facilitate application of the proposed approach.
While social learning has been demonstrated in species across many taxa, the role it plays in everyday foraging decisions is not well understood. Investigating social learning during foraging could shed light on the emergence of cultural variation in different groups. We used an open diffusion experiment to examine the spread of a novel foraging technique in captive Amazon parrots. Three groups were tested using a two-action foraging box, including experimental groups exposed to demonstrators using different techniques and control birds. We also examined the influence of agonistic and pilfering behaviour on task acquisition. We found evidence of social learning: more experimental birds than control birds interacted with and opened the box. The birds were, however, no more likely to use the demonstrated technique than the non-demonstrated one, making local or stimulus enhancement the most likely mechanism. Exhibiting aggression was positively correlated with box opening, whilst receiving aggression did not reduce motivation to engage with the box, indicating that willingness to defend access to the box was important in task acquisition. Pilfering food and success in opening the box were also positively correlated; however, having food pilfered did not affect victims� motivation to interact with the box. In a group context, pilfering may promote learning of new foraging opportunities. Although previous studies have demonstrated that psittacines are capable of imitation, in this naturalistic set-up there was no evidence that parrots copied the demonstrated opening technique. Foraging behaviour in wild populations of Amazons could therefore be facilitated by low-fidelity social learning mechanisms. © 2016 Springer-Verlag Berlin Heidelber
Existing guidance regarding clinically informed germline testing for patients with cancer is effective for evaluation of classic hereditary cancer syndromes and established gene/cancer type associations. However, current screening methods may miss patients with rare, reduced penetrance, or otherwise occult hereditary risk. Secondary finding of suspected germline variants that may confer inherited cancer risk via tumor comprehensive genomic profiling (CGP) has the potential to help address these limitations. However, reporting practices for secondary finding of germline variants are inconsistent, necessitating solutions for transparent and coherent communication of these potentially important findings. A workflow for improved confidence detection and clear reporting of potential pathogenic germline variants (PPGV) in select cancer susceptibility genes (CSG) was applied to a research dataset from real-world clinical tumor CGP of > 125,000 patients with advanced cancer. The presence and patterns of PPGVs identified across tumor types was assessed with a focus on scenarios in which traditional clinical germline evaluation may have been insufficient to capture genetic risk. PPGVs were identified in 9.7% of tumor CGP cases using tissue- and liquid-based assays across a broad range of cancer types, including in a number of “off-tumor” contexts. Overall, PPGVs were identified in a similar proportion of cancers with National Comprehensive Cancer Network (NCCN) recommendations for germline testing regardless of family history (11%) as in all other cancer types (9%). These findings suggest that tumor CGP can serve as a tool that is complementary to traditional germline genetic evaluation in helping to ascertain inherited susceptibility in patients with advanced cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.