Angiocidin, a tumor-associated peptide, has been previously shown to inhibit tumor progression by blocking angiogenesis. We now show that angiocidin has a direct inhibitory effect on tumor cell proliferation. MDA-MB-231 breast cancer cells were inhibited from proliferating in the presence of epidermal growth factor (EGF) and angiocidin. Angiocidin transfected breast cancer cells also displayed growth inhibition in vitro and failed to develop significant tumors in mice as compared to vector controls. The anti-proliferative effect of angiocidin was reversed by treating the cells with the epidermal growth factor receptor (EGFR) inhibitor 4557W, a potent tyrosine kinase inhibitor. Consistent with these results, we found that treatment of breast cancer cells with angiocidin induced a 2.3 fold increase in EGFR tyrosine 845 phosphorylation while no change in phosphorylation was observed in the remaining 16 phosphorylation sites of EGFR and those of its family members as measured by a human EGFR phosphorylation array. Treatment of breast cancer cells with angiocidin also resulted in the activation of nuclear factor κB (Nf-κB) and the de novo up-regulation of many down-stream genes transcribed by Nf-κB, including cytokines, inflammatory mediators and the cell cycle inhibitor p21waf1. Therefore, angiocidin is a peptide that not only inhibits tumor angiogenesis but directly induces inhibition of tumor growth progression through the activation of EGFR and down-stream genes transcribed by Nf-κB.
Small supernumerary ring chromosome 6 (sSRC(6)) is a rare chromosomal abnormality characterized by a broad clinical phenotype. The spectrum of this disorder can range from phenotypically normal to severe developmental delay and congenital anomalies. We describe two unrelated patients with small SRCs derived from chromosome 6 with a novel bone phenotype. Both patients presented with a complex bone disorder characterized by severe osteopenia, pathologic fractures and cyst-like lesions within the bone. Imaging revealed decreased bone mineral density, mutiple multiloculated cysts and cortical thinning. Lesion pathology in both patients demonstrated a bland cyst wall with woven dysplastic appearing bone entrapped within it. In patient 1, array comparative genomic hybridization (CGH) detected a tandem duplication of region 6p12.3 to 6q12 per marker chromosome. Cytogenetic analysis further revealed a complex patient of mosaicism with some cell lines displaying either one or two copies of the marker indicative of both tetrasomy and hexasomy of this region. Patient 2 was mosaic for a sSRC that encompassed a 26.8 Mb gain from 6p21.2 to 6q12. We performed an in-depth clinical analysis of a phenotype not previously observed in sSRC(6) patients and discuss the potential influence of genes located within this region on the skeletal presentation observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.