There is a general need for engineering of protein-like molecules that organize into geometrically-specific superstructures on molecular surfaces, directing further functionalization to create richly textured, multi-layered assemblies. Here we describe a computational approach whereby the surface properties and symmetry of a targeted surface define the sequence and superstructure of surface-organizing peptides. Computational design proceeds in a series of steps that encode both surface recognition and favorable inter-subunit packing interactions. This procedure is exemplified in the design of peptides that assemble into a tubular structure surrounding single-walled carbon nanotubes (SWNTs). The geometrically-defined, virus-like coating created by these peptides converts the smooth surfaces of SWNTs into highly textured assemblies, with long-scale order, capable of directing the assembly of gold nanoparticles into helical arrays along the SWNT axis.
We report fluorescence of single semiconductor nanorods (NRs) and few-NR clusters, correlated with transmission electron microscopy for direct determination of the number of NRs present in a single fluorescent source. For samples drop-cast from dilute solutions, we show that the majority of the blinking sources (approximately 75%) are individual NRs while the remaining sources are small clusters consisting of up to 15 NRs. Clusters containing two or three NRs exhibit intermittent fluorescence intensity trajectories, I(t), similar to those of individual NRs. The associated statistical parameters of on- and off-time probability densities for two- and three-NR clusters are indistinguishable from those of individual NRs. In contrast, statistically distinguishable blinking parameters are observed for clusters of five or more particles. In particular, the "truncation time" of the on-time probability density, i.e., the time characterizing the transition from a power law to an exponential decay, was found to increase superlinearly with the number of particles. Our long (2.4 x 10(4) s) blinking measurements also directly reveal the previously unobserved truncation of the power law distribution of the off-times for single nanoparticles.
We report on the fabrication, simulation, and characterization of insulated nanoelectrodes aligned with nanopores in low-capacitance silicon nitride membrane chips. We are exploring these devices for the transverse sensing of DNA molecules as they are electrophoretically driven through the nanopore in a linear fashion. While we are currently working with relatively large nanopores (6–12 nm in diameter) to demonstrate the transverse detection of DNA, our ultimate goal is to reduce the size sufficiently to resolve individual nucleotide bases, thus sequencing DNA as it passes through the pore. We present simulations and experiments that study the impact of insulating these electrodes, which is important to localize the sensing region. We test whether the presence of nanoelectrodes or insulation affects the stability of the ionic current flowing through the nanopore, or the characteristics of DNA translocation. Finally, we summarize the common device failures and challenges encountered during fabrication and experiments, explore the causes of these failures, and make suggestions on how to overcome them in the future.
Nanoscale devices are being extensively studied for their tunable electronic and optical properties, but the influence of impurities and defects is amplified at these length scales and can lead to poorly understood variations in characteristics of semiconducting materials. By performing a large ensemble of photoconductivity measurements in nanogaps bridged by core-shell CdSe/ZnS semiconductor nanocrystals, we discover optoelectronic methods for affecting solid-state charge trap populations. We introduce a model that unifies previous work and transforms the problem of irreproducibility in nanocrystal electronic properties into a reproducible and robust photocurrent response due to trap state manipulation. Because traps dominate many physical processes, these findings may lead to improved performance and device tunability for various nanoscale applications through the control and optimization of impurities and defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.