Many efforts to design introductory "cultural competence" courses for medical students rely on an information delivery (competence) paradigm, which can exoticize patients while obscuring social context, medical culture, and power structures. Other approaches foster a general open-minded orientation, which can remain nebulous without clear grounding principles. Medical educators are increasingly recognizing the limitations of both approaches and calling for strategies that reenvision cultural competence training. Successfully realizing such alternative strategies requires the development of comprehensive models that specify and integrate theoretical frameworks, content, and teaching principles.In this article, the authors present one such model: Introduction to Medicine and Society (IMS), a required cultural competence course launched in 2013 for first-year medical students at the Perelman School of Medicine at the University of Pennsylvania. Building on critical pedagogy, IMS is centered on a novel specification of "critical consciousness" in clinical practice as an orientation to understanding and pragmatic action in three relational domains: internal, interpersonal, and structural. Instead of transmitting discrete "facts" about patient "types," IMS content provokes students to engage with complex questions bridging the three domains. Learning takes place in a small-group space specifically designed to spur transformation toward critical consciousness. After discussing the three key components of the course design and describing a representative session, the authors discuss the IMS model's implications, reception by students and faculty, and potential for expansion. Their early experience suggests the IMS model successfully engages students and prepares future physicians to critically examine experiences, manage interpersonal dynamics, and structurally contextualize patient encounters.
The etiology of amyotrophic lateral sclerosis (ALS), a fatal motor neuron disorder characterized by progressive muscle weakness and spasticity, remains largely unknown. Approximately 5–10% of cases are familial, and of those, 15–20% are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Mutations of the SOD1 gene interrupt cellular homeostasis and contribute to cellular toxicity evoked by the presence of altered SOD1, along with other toxic species, such as advanced glycation end products (AGEs). AGEs trigger activation of their chief cell surface receptor, RAGE (receptor for advanced glycation end products), and induce RAGE-dependent cellular stress and inflammation in neurons, thereby affecting their function and leading to apoptosis. Here, we show for the first time that the expression of RAGE is higher in the SOD1 transgenic mouse model of ALS vs. wild-type mouse spinal cord. We tested whether pharmacological blockade of RAGE may delay the onset and progression of disease in this mouse model. Our findings reveal that treatment of SOD1 transgenic mice with soluble RAGE (sRAGE), a natural competitor of RAGE that sequesters RAGE ligands and blocks their interaction with cell surface RAGE, significantly delays the progression of ALS and prolongs life span compared to vehicle treatment. We demonstrate that in sRAGE-treated SOD1 transgenic animals at the final stage of the disease, a significantly higher number of neurons and lower number of astrocytes is detectable in the spinal cord. We conclude that RAGE antagonism may provide a novel therapeutic strategy for ALS intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.