Scope Sulforaphane (SFN), an isothiocyanate derived from crucifers, has numerous health benefits. SFN bioavailability from dietary sources is a critical determinant of its efficacy in humans. A key factor in SFN absorption is the release of SFN from its glucosinolate precursor, glucoraphanin, by myrosinase. Dietary supplements are used in clinical trials to deliver consistent SFN doses, but myrosinase is often inactivated in available supplements. We evaluated SFN absorption from a myrosinase-treated broccoli sprout extract (BSE) and are the first to report effects of twice daily, oral dosing on SFN exposure in healthy adults. Methods and results Subjects consumed fresh broccoli sprouts or the BSE, each providing 200 μmol SFN daily, as a single dose and as two 100-μmol doses taken 12 h apart. Using HPLC-MS/MS, we detected ~3 x higher SFN metabolite levels in plasma and urine of sprout consumers, indicating enhanced SFN absorption from sprouts. Twelve-hour dosing retained higher plasma SFN metabolite levels at later time points than 24-hour dosing. No dose responses were observed for molecular targets of SFN (i.e. heme oxygenase-1, histone deacetylase activity, p21). Conclusion We conclude that the dietary form and dosing schedule of SFN may impact SFN absorption and efficacy in human trials.
Epidemiological studies suggest a protective effect of cruciferous vegetables on breast cancer. Sulforaphane (SFN), an active food component derived from crucifers, has been shown to be effective in breast cancer chemoprevention. This study evaluated the chemopreventive effect of SFN on selective biomarkers from blood and breast tissues. In a 2-8-week double-blinded, randomized controlled trial, 54 women with abnormal mammograms and scheduled for breast biopsy were randomized to consume a placebo or a glucoraphanin (GFN) supplement providing SFN (n = 27). Plasma and urinary SFN metabolites, peripheral blood mononuclear cell (PBMC) histone deacetylase (HDAC) activity, and tissue biomarkers (H3K18ac, H3K9ac, HDAC3, HDAC6, Ki-67, p21) were measured before and after the intervention in benign, ductal carcinoma in situ (DCIS), or invasive ductal carcinoma (IDC) breast tissues. Within the supplement group, Ki-67 (p = 0.003) and HDAC3 (p = 0.044) levels significantly decreased in benign tissue. Pre-to-post-intervention changes in these biomarkers were not significantly different between treatment groups after multiple comparison adjustment. GFN supplementation was associated with a significant decrease in PBMC HDAC activity (p = 0.04). No significant associations were observed between SFN and examined tissue biomarkers when comparing treatment groups. This study provides evidence that GFN supplementation for a few weeks is safe but may not be sufficient for producing changes in breast tissue tumor biomarkers. Future studies employing larger sample sizes should evaluate alternative dosing and duration regimens to inform dietary SFN strategies in breast cancer chemoprevention.
Sulforaphane (SFN) is a phytochemical derived from cruciferous vegetables that has multiple molecular targets and anti-cancer properties. Researchers have demonstrated several chemopreventive benefits of SFN consumption, such as reductions in tumor growth, increases in cancer cell apoptosis, and disruption of signaling within tumor microenvironments both in vitro and in vivo. Emerging evidence indicates that SFN exerts several of its chemopreventive effects by altering epigenetic mechanisms. This review summarizes evidence of the impact of SFN on epigenetic events and how they relate to the chemopreventive effects of SFN observed in preclinical and clinical studies of breast and prostate cancers. Specific areas of focus include the role of SFN in the regulation of cell cycle, apoptosis, inflammation, antioxidant defense, and cancer cell signaling and their relationships to epigenetic mechanisms. Finally, remaining challenges and research needs for translating mechanistic work with SFN into human studies and clinical intervention trials are discussed.
Cruciferous vegetable components have been documented to exhibit anticancer properties. Targets of action span multiple mechanisms deregulated during cancer progression, ranging from altered carcinogen metabolism to the restoration of epigenetic machinery. Furthermore, the developing fetus is highly susceptible to changes in nutritional status and to environmental toxicants. Thus, we have exploited a mouse model of transplacental carcinogenesis to assess the impact of maternal dietary supplementation on cancer risk in offspring. In this study, transplacental and lactational exposure to a maternal dose of 15 mg/Kg B.W. of dibenzo[def,p]chrysene (DBC) resulted in significant morbidity of offspring due to an aggressive T-cell lymphoblastic lymphoma. As in previous studies, indole-3-carbinol (I3C, feed to the dam at 100, 500 or 1000 ppm), derived from cruciferous vegetables, dose-dependently reduced lung tumor multiplicity and also increased offspring survival. Brussels sprout and broccoli sprout powders, selected for their relative abundance of I3C and the bioactive component sulforaphane (SFN), respectively, surprisingly enhanced DBC-induced morbidity and tumorigenesis when incorporated into the maternal diet at 10% wt/wt. Purified SFN, incorporated in the maternal diet at 400 ppm, also decreased the latency of DBC-dependent morbidity. Interestingly, I3C abrogated the effect of SFN when the two purified compounds were administered in equimolar combination (500 ppm I3C and 600 ppm SFN). SFN metabolites measured in the plasma of neonates positively correlated with exposure levels via the maternal diet but not with offspring mortality. These findings provide justification for further study of the safety and bioactivity of cruciferous vegetable phytochemicals at supplemental concentrations during the perinatal period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.