Two chondroitin lyases were isolated from the colon anaerobe Bacteroides thetaiotaomicron. Both enzymes had similar molecular weights (104,000 and 108,000) and similar isoelectric points (8.0 and 7.9, respectively). Both enzymes were active against chondroitin sulfates A, B, and C and unsulfated polysaccharides, such as chondroitin and hyaluronic acid, although one of the enzymes was twice as active against chondroitin as the other enzyme. Both had similar Km values for chondroitin sulfates A and C (40 to 70 ,ug/ml) and for chondroitin (300 to 400 p.g/ml). Neither enzyme could degrade the highly sulfated mucopolysaccharide heparin, but heparin was a potent inhibitor of the activity of both enzymes. Although enzymes I and II were similar in many respects, a comparison of peptides resulting from partial digestion with N-chlorosuccinimide or papain demonstrated that the two proteins are not related.
Cholestatic jaundice and elevated liver enzymes are uncommon, but recognized, manifestations of neonatal thyrotoxicosis. Current guidelines for evaluation of cholestatic jaundice and reviews in Neonatology literature do not discuss hyperthyroidism in the differential diagnosis of cholestatic jaundice. We report two cases of neonatal thyrotoxicosis secondary to neonatal Graves' disease that presented with cholestatic jaundice and elevated liver enzymes at birth. Early recognition of thyrotoxicosis as a cause of the hepatic disease in the neonate is crucial to prevent unnecessary diagnostic procedures and to initiate timely treatment.
Three species of colonic bacteria can ferment the mucopolysaccharide chondroitin sulfate: Bacteroides ovatus, Bacteroides sp. strain 3452A (an unnamed DNA homology group), and B. thetaiotaomicron. Proteins associated with the utilization of chondroitin sulfate by B. thetaiotaomicron have been characterized previously. In this report we compare chondroitin lyases and chondroitin sulfate-associated outer membrane polypeptides of B. ovatus and Bacteroides sp. strain 3452A with those of B. thetaiotaomicron. All three species produce two soluble cell-associated chondroitin lyases, chondroitin lyase I and II. Purified enzymes from the three species have similar pH optima, Km values, and molecular weights. However, peptide mapping experiments show that the chondroitin lyases from B. ovatus and Bacteroides sp. strain 3452A are not identical to those of B. thetaiotaomicron. A cloned gene that codes for the chondroitin lyase II from B. thetaiotaomicron hybridized on a Southern blot with DNA from B. ovatus or Bacteroides sp. strain 3452A only when low-stringency conditions were used. Antibody to chondroitin lyase II from B. thetaiotaomicron did not cross-react with chondroitin lyase II from B. ovatus or Bacteroides sp. strain 3452A. Chondroitin lyase activity in all three species was inducible by chondroitin sulfate. B. ovatus and Bacteroides sp. strain 3452A, like B. thetaiotaomicron, have outer membrane polypeptides that appear to be regulated by chondroitin sulfate, but the chondroitin sulfateassociated outer membrane polypeptides differ in molecular weight. Despite these differences, the ability of intact bacteria to utilize chondroitin sulfate, as indicated by growth yields in carbohydrate-limited continuous culture and the rate at which the chondroitin lyases were induced, was the same for all three species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.