Social reward is critical for social relationships, and yet we know little about the characteristics of social interactions that are rewarding or the neural mechanisms underlying that reward. Here, we investigate the sex-dependent role of oxytocin receptors within the ventral tegmental area (VTA) in mediating the magnitude and valence of social reward. Operant and classical conditioning tests were used to measure social reward associated with same-sex social interactions. The effects of oxytocin, selective oxytocin receptor agonists, antagonists, and vehicle injected into the VTA on social reward was determined in male and female Syrian hamsters. The colocalization of FOS and oxytocin in sites that project to the VTA following social interaction was also determined. Females find same-sex social interactions more rewarding than males and activation of oxytocin receptors in the VTA is critical for social reward in females, as well as males. These studies provide support for the hypothesis that there is an inverted U relationship between the duration of social interaction and social reward, mediated by oxytocin; and that in females the dose-response relationship is initiated at lower doses compared with males. Same-sex social interaction is more rewarding in females than in males, and an inverted U relationship mediated by oxytocin may have a critical role in assigning positive and negative valence to social stimuli. Understanding these sex differences in social reward processing may be essential for understanding the sex differences in the prevalence of many psychiatric disorders and the development of gender-specific treatments of neuropsychiatric disorders.Neuropsychopharmacology (2019) 44:785-792; https://doi.
This task allows for detailed and direct assessment of social and non-social rewards that may serve as effective behavioral reinforcers in this operant conditioning model, and it can be used to investigate the neural mechanisms regulating motivation.
The rewarding properties of social interactions play a critical role in the development and maintenance of social relationships, and deficits in social reward are associated with various psychiatric disorders. In the present study, we used a novel Operant Social Preference (OSP) task to investigate the reinforcing properties of social interactions under conditions of high or low reward value, and high or low behavioral effort in male Syrian hamsters. Further, we investigated the role of oxytocin (OT) in a key structure of the mesolimbic reward system, the ventral tegmental area (VTA), in mediating the reinforcing properties of social interaction. Adult male hamsters were placed in a three-chambered apparatus, and allowed access to either a social chamber containing an unrestrained conspecific or a non-social chamber, by pushing through a one-way entry, vertical-swing door. Increasing the duration of social interaction (reward value) decreased the frequency of entering the social interaction chambers, whereas decreasing the duration of social interaction conversely increased the frequency of entries. Moreover, increasing behavioral effort required to access social interaction decreased the frequency of entries, especially under conditions when the duration of social interaction was only 5 s. OT injected into the VTA decreased the frequency of entering social interaction chambers in a manner similar to that observed when duration was increased, whereas injection of an OT receptor antagonist in the VTA increased the frequency of seeking social interaction. Taken together, these data support the hypothesis that activation of OT receptors in the VTA are critical for the reinforcing properties of social interactions. Furthermore, social interactions may exhibit duration and cost dependent reinforcing effects on behavior similar to those observed with food and drugs of abuse.
Understanding the neurobiological mechanisms mediating dominance and competitive aggression is essential to understanding the development and treatment of various psychiatric disorders. Previous research suggests that these mechanisms are both sexually differentiated and influenced substantially by social experience. In numerous species, GABA A receptors in the lateral septum have been shown to play a significant role in aggression in males. However, very little is known about the role of these GABA A receptors in female aggression, the role of social experience on GABA A receptor mediated aggression, or the roles of different GABA A subtypes in regulating aggression. Thus, in the following set of experiments we determined the role of social experience in modulating GABA A receptor induced aggression in both male and female Syrian hamsters, with a particular focus on the GABA A receptor subtype mediating these effects. Activation of GABA A receptors in the dorsal lateral septum increased aggression in both males and females. Social housing, however, significantly decreased the ability of GABA A receptor activation to induce aggression in males but not females. No significant differences were observed in the effects of GABA A receptor activation in dominant and subordinate group housed hamsters. Finally, examination of potential GABA A receptor subtype specificity revealed that social housing decreased the ratio of extrasynaptic to synaptic subunit GABA A receptor mRNA expression in the anterior dorsal lateral septum. While activation of extrasynaptic, but not synaptic GABA A receptors in the dorsal lateral septum increased aggression. These data suggest that social experience can have profound effects on the neuronal mechanisms mediating aggression, especially in males, and that δ extrasynaptic GABA A receptors may be an important therapeutic target in disorders characterized by high levels of aggression.Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. http://www.springer.com/gb/openaccess/authors-rights/aam-terms-v1
Despite commercial availability of software to facilitate sleep–wake scoring of electroencephalography (EEG) and electromyography (EMG) in animals, automated scoring of rodent models of abnormal sleep, such as narcolepsy with cataplexy, has remained elusive. We optimize two machine-learning approaches, supervised and unsupervised, for automated scoring of behavioral states in orexin/ataxin-3 transgenic mice, a validated model of narcolepsy type 1, and additionally test them on wild-type mice. The supervised learning approach uses previously labeled data to facilitate training of a classifier for sleep states, whereas the unsupervised approach aims to discover latent structure and similarities in unlabeled data from which sleep stages are inferred. For the supervised approach, we employ a deep convolutional neural network architecture that is trained on expert-labeled segments of wake, non-REM sleep, and REM sleep in EEG/EMG time series data. The resulting trained classifier is then used to infer on the labels of previously unseen data. For the unsupervised approach, we leverage data dimensionality reduction and clustering techniques. Both approaches successfully score EEG/EMG data, achieving mean accuracies of 95% and 91%, respectively, in narcoleptic mice, and accuracies of 93% and 89%, respectively, in wild-type mice. Notably, the supervised approach generalized well on previously unseen data from the same animals on which it was trained but exhibited lower performance on animals not present in the training data due to inter-subject variability. Cataplexy is scored with a sensitivity of 85% and 57% using the supervised and unsupervised approaches, respectively, when compared to manual scoring, and the specificity exceeds 99% in both cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.